初一数学上册知识点总结优秀6篇-尊龙凯时最新z6com

发布时间:

军事科学研究战争和军事技术,以及国家安全和国际关系等。传统文化和文化遗产的保护和传承是文化事业的重要任务之一。这次帅气的小编为您整理了6篇《初一数学上册知识点总结》,希望能为您的思路提供一些参考。

初一上册数学知识点总结 篇一

同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也叫同类项。

判断几个单项式或项,是否是同类项的两个标准:

①所含字母相同。

②相同字母的次数也相同。

判断同类项时与系数无关,与字母排列的顺序也无关。

合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

合并同类项步骤:

(1)准确的找出同类项。

(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

(3)写出合并后的结果。

合并同类项时注意:

(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0

(2)不要漏掉不能合并的项。[www.chayi5.com]

(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

(4)不是同类项千万不能进行合并。

初一上册数学知识点总结 篇二

1.有理数:

(1)凡能写成 形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数, a也不一定是正数;p不是有理数;

(2)有理数的分类: ① ②

2.数轴:

数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ? a b=0 ? a、b互为相反数。

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;

5.有理数比大小:

(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:

乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数。

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数。

8.有理数加法的运算律:

(1)加法的交换律:a b=b a ;(2)加法的结合律:(a b) c=a (b c).

9.有理数减法法则:

减去一个数,等于加上这个数的相反数;即a-b=a (-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b c)=ab ac .

12.有理数除法法则:

除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:

把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

16.近似数的精确位:

一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

17.有效数字:

从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

18.混合运算法则:

先乘方,后乘除,最后加减。

初一上册数学知识点总结 篇三

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

一、基础知识:

1、正数(positionnumber):大于0的数叫做正数。

2、负数(negationnumber):在正数前面加上负号"-"的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

二、数轴满足以下要求:

(1)在直线上任取一个点表示数0,这个点叫做原点(origin);

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

(3)选取适当的长度为单位长度。

6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a b=b a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a b) c=a (b c)

9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a (-b)

10、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.

乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b c)=ab ac

11、倒数

1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

14、有理数的混合运算顺序

(1)"先乘方,再乘除,最后加减"的顺序进行;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

15、科学技术法:把一个大于10的数表示成a?10n的形式(其中a是整数数位只有一位的数(即0

16、近似数(approximatenumber):

17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

三、拓展知识:

1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

(1)所有有理数组成的数集叫做有理数集;

(2)所有的整数组成的数集叫做整数集。

2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

4、比较两个有理数大小的方法有:

(1)根据有理数在数轴上对应的点的位置直接比较;

(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;

(3)做差法:a-b>0——a>b;

(4)做商法:a/b>1,b>0——a>b.

初一上册数学知识点总结 篇四

①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。正数的任何次幂都是正数,0的任何次幂都是0。新- 课- 标-第 -一- 网

②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2

注意:|a| b2=0 得:a=0 且 b=0

强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;

-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8

③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,

从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、

大括号依次进行。注意:12-4×5=12-20(不能把-变 )

④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a n比原整数位减1。(注意科学计数法与原数的互划。

⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55. (再如: 2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。

初一上册数学知识点总结 篇五

(1)多项式:几个单项式的和叫做多项式。

1、多项式中的每一个单项式叫做多项式的项。

2、多项式中不含字母的项叫做常数项。

3、一个多项式有几项,就叫做几项式。

4、多项式的每一项都包括项前面的符号。

5、多项式中次数最高的项的次数,叫做这个多项式的次数。

(2)多项式排列:

①把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母的降幂排列。

②把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母的升幂排列。

(3)单项式与多项式统称整式。(分母含有字母的代数式不是整式)

初一上册数学知识点总结 篇六

一。线段、射线、直线

※1.正确理解直线、射线、线段的概念以及它们的区别:

名称图形表示方法端点长度

直线直线ab(或ba)

直线l无端点无法度量

射线射线om1个无法度量

线段线段ab(或ba)

线段l2个可度量长度

※2.直线公理:经过两点有且只有一条直线。

二。比较线段的长短

※1.线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离。

※2.比较线段长短的两种方法:

①圆规截取比较法;

②刻度尺度量比较法。

※3.用刻度尺可以画出线段的中点,线段的和、差、倍、分;

用圆规可以画出线段的和、差、倍。

三。角的度量与表示

※1.角:有公共端点的两条射线组成的图形叫做角;

这个公共端点叫做角的顶点;

这两条射线叫做角的边。

※2.角的表示法:角的符号为“∠”

以上就是差异网为大家整理的6篇《初一数学上册知识点总结》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在差异网。

301 37065
网站地图