生活中的数学课程教学案例优秀5篇-尊龙凯时最新z6com
教学设计对于教师来说一定不陌生,在现实社会中,教学是重要的工作之一,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。反思应该怎么写呢?以下内容是差异网为您带来的5篇《生活中的数学课程教学案例》,如果能帮助到亲,我们的一切努力都是值得的。
高中数学教学案例分析 篇一
教学案例
我 所带的是高二(2)班,她是个庞大的班级,有56名学生。
在第一周上课的几天里,我渐渐的发现一名“怪”学生——张勇明。这名学生坐在教室正中间第二排的位置上。这样的位置是老师能看到的最佳位置,就在老师眼皮底下。上课时,其他这种位置的同学 慑于被老师盯上,一般都规规矩矩的坐着,认认真真的听课, 而这位同学却不然,他好象一点也不怕被我盯上。
上课时,先是看着黑板听一会儿,然后就弯下腰半趴在课桌上什么也不看,懒懒的样子,不知道在干什么。下课后我走到他跟前问他是不是有什么事,他笑着摇摇头说没有。
课后(2)班主任周老师告诉我,其实那个学生的数学基础挺扎实的,只是有些懒不能长久坚持下去,应该多注意多关照一下。
在以后的上课中,我在提问其他同学问题的时候,也有意无意的去提问他。课后,走到他跟前问他有没有不清楚的问题。
渐渐的在以后的课堂上,这位同学半趴在课桌上的次数少了,当讲到关键处时,我也能看到他在集中精力听。而且我还发现他一个很好的学习习惯——提前预习书本内容,提前做课后练习及习题。有一次我讲四种命题的关系,下课后我走到张勇明跟前,看到他已经把下一节充分必要条件的练习题做过啦,而且准确无误。
中段考试成绩出来了,张勇明的数学考了75分(满分150分),全班第一名。其中有一道数学大题难度较大,我曾在课堂上给同学们讲过,可是只有张勇明一个学生作对,其他做对的同学寥寥无几。
由此,我体会到:由于(2)班大部分同学基础比较薄弱,而高中阶段新内容新知识的接受又需要以前所学内容做铺垫,而以前的知识又没真正掌握,这样恶性循环下去以致使他们失去了学习的兴趣。所以在课堂上,多数同学听的蒙蒙胧胧似懂非懂。
针对这种现象,我要求同学做到:(1)把以前的数学课本从家里找到带到教室来,放在课桌上有意识的经常翻一翻。这样有些没记住的公式或不熟悉的公理定理就能记住了。(2)同学们作课堂笔记的时候,对于涉及到的旧知识内容如果不了解,那么也要做笔记。这样易于查漏补缺,新旧内容一起巩固并掌握。(3)当天事情当天做。每天上完新课后,若有不懂的问题争取当天解决,或者问我或者问同学。(4)经常复习巩固。
高二(班)路玉
小学数学教学案例设计 篇二
第2课时相遇问题
年月日编号:
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的`能力。
教学重难点:
1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。
2、理解相向运动中求相遇时间问题的解决方法。
教学过程:
一、复习旧知
1、说一说速度、时间和路程三者之间的关系。
2、应用。
(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
二、探索新知
1、揭示课题。
师:数学与交通密切相联。今天,我们一起来探索相遇问题。
板书课题:相遇问题。
2、创设“结伴出游”的情境。
淘气和笑笑相约出去游玩。
3、引导学生找出有关的数学信息,解决第一个问题。
第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。
4、画线段图帮助学生理解第二、第三个问题。
第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。
三、试一试
先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。
四、练一练
1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。
2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。
五、知识回顾,全课总结
今天这节课我们学习了什么?
六、布置作业
小学数学教学案例设计 篇三
课题一:
长方体、正方体的认识
教学内容:
p72的内容,练习十五的第1-4题,认识图形。
教学目的:
使学生能直观认识长方体和正方体,能够辨别这些图形。
教具、学具准备:
一些长方体、正方体的实物,同样大小的正方体8个。
教学过程:
一、新课
1.初步认识长方体。
教师:在日常生活中我们见到的物体有不同的形状,(拿出一个纸盒)。大家看,这是一个纸盒,谁知道它是什么形状的?板书:长方形。
让学生数一数纸盒有几个面?教学生有顺序的数法:上下,左右,前后各两个面,一共是六个面。
再出示一个长方体实物,其中有两个面是正方形的,要求学生看一看长方体的各个面和相对面有什么特点。
这样使学生明白长方体有6个面,相对的两个面的形状相同。
2.初步认识正方体。
出示一些正方体的实物。问:谁知道它们是什么形状的?板书:正方体。让学生数一数正方体有几个面?并且指出正方体的六个面有什么特点?
3.出示长方体和正方体的图。
4.辨认长方体和正方体。
出示一些实物,让学生辨认。
课间活动。
5.做p72的“做一做”
二、巩固练习
做练习十五的第1-4题。
三、小结
回忆长方体有几个面,相对面一样吗?
正方体呢?
认识图形
高中数学教学案例 篇四
教学精细化管理有三个层面的涵义。
1、“细”,即管理覆盖的教学环节要全。在计划制定、个人备课、集体备课、上课、课后反思、辅导、测试、反馈、总结和教学评价等各环节都要制定规章,不可或缺。只有关注每个环节、每个细节,才不至于影响系统整体功能的发挥。
2、“精”,即管理工作要突出重点。学校要根据实际确定每个时期的教学管理工作重点,重点工作重点做,才能把握住方向,才能立竿见影出效益。不分主次地平均用力往往事倍功半。
3、“精细化管理”要制度化,落实要到位。有制度不落实等于没制度,落实不坚决、不坚持,也不出效益。
情境教学,即构建一个以情境为基础,学生在学习中成为提出问题和解决问题的主体,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。“正弦定理”是全日制普通高级中学教科书(试验修订本)数学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课的主要任务是引入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。
一、教学设计
1、创设一个现实问题情境作为提出问题的背景;
2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?
3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。
二、教学过程
1、设置情境
利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头a处囤积的重要物资及人员用船转运到正对岸的码头b处或其下游1 km的码头c处。已知船在静水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。
2、提出问题
师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。
待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:
(l)船应开往b处还是c处?
(2)船从a开到b、c分别需要多少时间? (3)船从a到b、c的距离分别是多少?
(4)船从a到b、c时的速度大小分别是多少? (5)船应向什么方向开,才能保证沿直线到达b、c? 师:大家讨论一下,应该怎样解决上述问题?
大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。
师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。
生:船从a开往b的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小∣v∣及vl与v2的夹角θ:
生:船从a开往c的情况如图3,∣ad∣=∣v1∣= 5,∣de∣=∣af∣=∣v2∣=3,易求得∠aed = ∠eaf = 450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。
师:请大家想一下,这两个问题的数学实质是什么?
部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。 师:请大家讨论一下,如何解决这两个问题?
生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。
生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。
生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。
师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?
3、解决问题
师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形是三角形的特例,可以先在直角三角形中试探一下。
师:请各小组研究在rt△abc中,任意两边及其对角这4个元素间有什么关系?
多数小组很快得出结论:a/sina = b/sinb = c/sinc。 师:a/sina = b/sinb = c/sinc在非rt△abc中是否成立?
众学生:不一定,可以先用具体例子检验。若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。
师:这是个好主意。请每个小组任意做出一个非rt△abc,用量角器和刻度尺量出各边的长和各角的大小,用计算器作为计算工具,具体检验一下,然后报告检验结果。
几分钟后,多数小组报告结论成立,只有一个小组因测量和计算误差,得出否定的结论。教师在引导学生找出失误的原因后指出:此关系式在任意△abc中都能成立,请大家先考虑一下证明思路。
生:想法将问题转化成直角三角形中的问题进行解决。
生:因为要证明的是一个等式,所以应先找到一个可以作为证明基础的等量关系。
师:在三角形中有哪些可以作为证明基础的等量关系呢? 学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:
1、三角形的面积不变;
2、三角形同一边上的高不变;
3、三角形外接圆直径不变。
师:据我所知,从ac cb=ab出发,也能证得结论,请大家讨论一下。 生:要想办法将向量关系转化成数量关系。
生:利用向量的数量积运算可将向量关系转化成数量关系。 生:还要想办法将有三个项的关系式转化成两个项的关系式。
生:因为两个垂直向量的数量积为0,可考虑选一个与三个向量中的一个向量(如向量ac)垂直的向量与向量等式的两边分别作数量积。
师:同学们通过自己的努力,发现并证明了正弦定理。正弦定理揭示了三角形中任意两边与其对角的关系,请大家留意身边的事例,正弦定理能够解决哪些问题。
三、教学总结
在本课的教学中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实。
创设数学情境是这种教学模式的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。这种教学模式主张以问题为连线组织教学活动,以学生作为提出问题的主体,因此,如何引导学生提出问题是教学成败的关键。教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。教师还要积极引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问引向深入。
教学精细化管理有三个层面的涵义。 1.“细”,即管理覆盖的教学环节要全。在计划制定、个人备课、集体备课、上课、课后反思、辅导、测试、反馈、总结和教学评价等各环节都要制定规章,不可或缺。只有关注每个环节、每个细节,才不至于影响系统整体功能的发挥。
2、“精”,即管理工作要突出重点。学校要根据实际确定每个时期的教学管理工作重点,重点工作重点做,才能把握住方向,才能立竿见影出效益。不分主次地平均用力往往事倍功半。
3、“精细化管理”要制度化,落实要到位。有制度不落实等于没制度,落实不坚决、不坚持,也不出效益。
情境教学,即构建一个以情境为基础,学生在学习中成为提出问题和解决问题的主体,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。“正弦定理”是全日制普通高级中学教科书(试验修订本)数学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课的主要任务是引入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。
一、教学设计
1、创设一个现实问题情境作为提出问题的背景;
2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?
3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。
二、教学过程
1、设置情境 利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头a处囤积的重要物资及人员用船转运到正对岸的码头b处或其下游1 km的码头c处。已知船在静水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。
2、提出问题
师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。
待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:
(l)船应开往b处还是c处?
(2)船从a开到b、c分别需要多少时间? (3)船从a到b、c的距离分别是多少?
(4)船从a到b、c时的速度大小分别是多少? (5)船应向什么方向开,才能保证沿直线到达b、c? 师:大家讨论一下,应该怎样解决上述问题?
大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。
师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。
生:船从a开往b的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小∣v∣及vl与v2的夹角θ:
生:船从a开往c的情况如图3,∣ad∣=∣v1∣= 5,∣de∣=∣af∣=∣v2∣=3,易求得∠aed = ∠eaf = 450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。
师:请大家想一下,这两个问题的数学实质是什么?
部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。
师:请大家讨论一下,如何解决这两个问题? 生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。
生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。
生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。
师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?
3、解决问题
师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形是三角形的特例,可以先在直角三角形中试探一下。
师:请各小组研究在rt△abc中,任意两边及其对角这4个元素间有什么关系?
多数小组很快得出结论:a/sina = b/sinb = c/sinc。 师:a/sina = b/sinb = c/sinc在非rt△abc中是否成立?
众学生:不一定,可以先用具体例子检验。若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成 chayi5.co chayi5.com m立,再想办法进行严格的证明。
师:这是个好主意。请每个小组任意做出一个非rt△abc,用量角器和刻度尺量出各边的长和各角的大小,用计算器作为计算工具,具体检验一下,然后报告检验结果。
几分钟后,多数小组报告结论成立,只有一个小组因测量和计算误差,得出否定的结论。教师在引导学生找出失误的原因后指出:此关系式在任意△abc中都能成立,请大家先考虑一下证明思路。
生:想法将问题转化成直角三角形中的问题进行解决。
生:因为要证明的是一个等式,所以应先找到一个可以作为证明基础的等量关系。
师:在三角形中有哪些可以作为证明基础的等量关系呢? 学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:
1、三角形的面积不变;
2、三角形同一边上的高不变;
3、三角形外接圆直径不变。
师:据我所知,从ac cb=ab出发,也能证得结论,请大家讨论一下。 生:要想办法将向量关系转化成数量关系。
生:利用向量的数量积运算可将向量关系转化成数量关系。 生:还要想办法将有三个项的关系式转化成两个项的关系式。
生:因为两个垂直向量的数量积为0,可考虑选一个与三个向量中的一个向量(如向量ac)垂直的向量与向量等式的两边分别作数量积。
师:同学们通过自己的努力,发现并证明了正弦定理。正弦定理揭示了三角形中任意两边与其对角的关系,请大家留意身边的事例,正弦定理能够解决哪些问题。
三、教学总结
在本课的教学中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实。
创设数学情境是这种教学模式的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。这种教学模式主张以问题为连线组织教学活动,以学生作为提出问题的主体,因此,如何引导学生提出问题是教学成败的关键。教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。教师还要积极引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问引向深入。
小学数学教学案例设计 篇五
教学目标:
1、通过动手操作,提高学生的作图能力,加强学生的空间观念。
2、引导学生利用所学相关知识进行及时检验的学习习惯。
教学重、难点:
掌握按指定度数画角的方法。
课前准备:
学生准备了画纸、三角板、量角器、铅笔等学习用品。
教师准备量角器、三角板、图片。
教学设计:
一、兴趣引入。
教师:(出示由各种角构成的图片),学生欣赏,说观察的感受。
生活中的这些美丽图案是怎样画出来的?(用各种角。)
这些角又是怎样画出来的?你想用什么方法来画角?
引出课题:画角
二、尝试体验、探究新知。
师:接下来老师准备了几项活动,希望同学们在实践活动中掌握画角的技能。
活动1:画出60°的角。
1、请学生猜一猜一副三角板可以画出哪些角度的角。
2、引导学生用三角板拼角,用这些角画一些特殊度数的角,说说所拼的角的度数,再用量角器量角验证,小组合作完成。(在这个活动中师只是提出画角的要求,但是学生用什么方法没有限制。)
3、你用什么方法画出了60°的角?
学生根据自己的做法回答和演示。
活动2:画出85°的角。
1、师:如果要画的不是上面这些特殊角,比如画一个85°的角应该怎么办?
(这个活动师仍然不提出具体的描画方法要求。学生会在活动中发现用三角板不容易画出这个角,应该使用量角器才能准确的画出这个角。这时引导同学提出:三角板在画角时是有局限性的,不是所有的角都能用三角板精确地画出来。)
2、学生自己动手画角,可以讨论后再完成。
活动3:用一副三角板可以画出哪些角?
学生活动,小组合作完成。(两个角组合可以画出15°、30°、45°、60°、75°、105°、90°、135°、150°、120°等角。)
活动4:画70°,115°的角。
1、说说你想用什么工具帮助你画出这些角?(用量角器画这两个角。)
2、学生动手画角。
3、活动后师及时问,怎样使用量角器画角?
活动5:归纳总结
1、先让学生说说画角的方法,再引导学生进行小结。
(1)先画一条射线使量角器的中心和射线的端点重合,零刻度线和射线重合。
(2)在量角器所画角刻度线的地方点一点。
(3)以射线的端点为端点,通过刚画的点,再画一条射线。
2、让学生同桌讨论:画角时,当量角器有两圈刻度时,是看里圈还是看外圈?
小结:当先画的那条射线是与内圈的零刻度线重合,那么找点时就应该在内圈找所要画的角刻度线;如果先画的那条射线是与外圈的零刻度线重合,那么找点时就应该在外圈找所要画的角刻度线。
3、用量角器画55度和140度的角,说说画这两个角有什么不同。
4、初步判断所画的角是否正确。
学生举例。例如要画一个120度的角,结果画了一个锐角出来,利用角分类来判断就知道是画错了。
三、巩固练习。
1、用一副三角板画出75和45度的角。
2、用量角器画出15、80和165度的角。
(1)合作交流;
(2)集体校对。
3、用一张长方形的纸折出45、135的角,让学生演示其折角的过程。
板书:
画角
(1)先画一条射线使量角器的中心和射线的端点重合,零刻度线和射线重合。
(2)在量角器所画角刻度线的地方点一点。
(3)以射线的端点为端点,通过刚画的点,再画一条射线。
读书破万卷下笔如有神,以上就是差异网为大家整理的5篇《生活中的数学课程教学案例》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在差异网。