尊龙凯时最新z6com-尊龙凯时一人生就是博官网 > 教师教学 > 教学方法

勾股定理教案范本 勾股定理教案教学方法优秀6篇-尊龙凯时最新z6com

发布时间

作为一位优秀的人民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么应当如何写教学设计呢?下面是差异网整理的6篇《勾股定理教案范本 勾股定理教案教学方法》,希望朋友们参阅后能够文思泉涌。

初中数学《勾股定理》教学设计 篇一

一、学生知识状况分析

本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

二、教学任务分析

本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

三、本节课的教学目标是:

1.通过观察图形,探索图形间的关系,发展学生的空间观念。

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。

四、教法学法

1.教学方法

引导—探究—归纳

本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:

(1)从创设问题情景入手,通过知识再现,孕育教学过程;

(2)从学生活动出发,顺势教学过程;

(3)利用探索研究手段,通过思维深入,领悟教学过程。

2.课前准备

教具:教材、电脑、多媒体课件。

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具

五、教学过程分析

本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。

1.3勾股定理的应用:课后练习

一、问题引入:

1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。

2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形

1.3勾股定理的应用:同步检测

1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )

a.0.7米b.0.8米c.0.9米d.1.0米

2.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米。小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )

a.锐角弯b.钝角弯c.直角弯d.不能确定

3.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )

a.5≤a≤12 b.5≤a≤13 c.12≤a≤13 d.12≤a≤15

4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组。

a.13,12,12 b.12,12,8 c.13,10,12 d.5,8,4

初中数学《勾股定理》教学设计 篇二

教学目标

1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

教学重点

了解勾股定理的由来,并能用它来解决一些简单的问题。

教学难点

勾股定理的探究以及推导过程。

教学过程

一、创设问题情景、导入新课

首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示课件观察后回答:

1、观察图1—2,正方形a中有_______个小方格,即a的面积为______个单位。

正方形b中有_______个小方格,即b的面积为______个单位。

正方形c中有_______个小方格,即c的面积为______个单位。

2、你是怎样得出上面的结果的?

3、在学生交流回答的基础上教师进一步设问:图1—2中,a,b,c面积之间有什么关系?学生交流后得到结论:a b=c。

二、层层深入、探究新知

1、做一做

出示投影3(书中p3图1—3)

提问:

(1)图1—3中,a,b,c之间有什么关系?

(2)从图1—2,1—3中你发现什么?

学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。

2、议一议

图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?

(1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

(2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?

3、想一想

我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?

三、巩固练习。

1、在图1—1的问题中,折断之前旗杆有多高?

2、错例辨析:△abc的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足

=25即:c=5辨析:

(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形abc并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△abc是直角三角形,第三边c也不一定是满足,题目中并未交待c是斜边。

综上所述这个题目条件不足,第三边无法求得

四、课堂小结

鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。

八年级数学《勾股定理》教案 篇三

[教学分析]

勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]

一、 知识与技能

1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

2、应用勾股定理解决简单的实际问题

3学会简单的合情推理与数学说理

二、 过程与方法

引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、 情感与态度目标

通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、 重点与难点

1、探索和证明勾股定理

2熟练运用勾股定理

[教学过程]

一、创设情景,揭示课题

1、教师展示图片并介绍第一情景

以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

2、教师展示图片并介绍第二情景

毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

二、师生协作,探究问题

1、现在请你也动手数一下格子,你能有什么发现吗?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

3、你能得到什么结论吗?

三、得出命题

勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

四、勾股定理的证明

赵爽弦图的证法(图2)

第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。

第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。

因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

五、应用举例,拓展训练,巩固反馈。

勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

六、归纳总结

1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

七、讨论交流

让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

初中数学《勾股定理》教学设计 篇四

教学准备

1、教学目标

1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

2、教学重点/难点

1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

3、教学用具

4、标签

教学过程

设置情景问题,导入新课

相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.(图看幻灯片)

数学家毕达哥拉斯的发现:sa sb=sc

引申到直角三角形

让学生画一个直角边为75px和100px的直角△abc,用刻度尺量出ab的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△abc,用刻度尺量ab的长。

你是否发现32 42与52的关系,52 122和132的关系,即32 42=52,52 122=132,那么就有勾2 股2=弦2。

对于任意的直角三角形也有这个性质吗?

我国汉代的数学家赵爽指出:四个全等的直角三角形如下拼成一个中空的正方形。

通过位移的形式幻灯片展示

总结:勾股世界

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角三角形,如果勾等于三,股等于四,那么弦就等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中。在这本书中的另一处,还记载了勾股定理的一般形式。

1945年,人们在研究古巴比伦人遗留下的一块数学泥板时,惊讶地发现上面竟然刻有15组能构成直角三角形三边的数,其年代远在商高之前。

相传二千多年前,希腊的毕达哥拉斯学派首先证明了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。

例习题分析

例1(补充)已知:在△abc中,∠c=90°,∠a、∠b、∠c的对边为a、b、c。

求证:a2+b2=c2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。

例2已知:在△abc中,∠c=90°,∠a、∠b、∠c的对边为a、b、c。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边和右边面积相等,即化简可证。

课后习题

1.勾股定理的具体内容是: 。

2.如图,直角△abc的主要性质是:∠c=90°,(用几何语言表示)

⑴两锐角之间的关系:__________________ ;

⑵若d为斜边中点,则斜边中线 ____________;

⑶若∠b=30°,则∠b的对边和斜边:_____________ ;

⑷三边之间的关系:_____________。

3.△abc的三边a、b、c,若满足,则_______ =90°;则∠b是 _____角; 若满足,则∠b是 ______角。

数学勾股定理教案 篇五

教学目标:

一知识技能

1、理解勾股定理的逆定理的证明方法和证明过程;

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

二数学思考

1、通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

2、通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。

三解决问题

通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

四情感态度

1、通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;

2、在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神。

教学重难点:

一重点:勾股定理的逆定理及其应用。

二难点:勾股定理的逆定理的证明。

教学方法

启发引导分组讨论合作交流等。

教学媒体

多媒体课件演示。

教学过程:

一复习孕新,引入课题

问题:

(1) 勾股定理的内容是什么?

(2) 求以线段ab为直角边的直角三角形的斜边c的长:

① a=3,b=4

② a=2.5,b=6

③ a=4,b=7.5

(3) 分别以上述abc为边的三角形的形状会是什么样的呢?

二动手实践,检验推测

1、把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?

学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测。

教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题。在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的。

2、分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?

3、结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

三探索归纳,证明猜想

问题

1、三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?

2、你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?

3、如图18.2-2,若△abc的三边长

满足

,试证明△abc是直角三角形,请简要地写出证明过程。

教师提出问题,并适时诱导,指导学生完成问题3的证明。之后,归纳得出勾股定理的逆定理。

四尝试运用,熟悉定理

问题

1例1:判断由线段

组成的三角形是不是直角三角形:

(1)

(2)

2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?

教师巡视,了解学生对知识的掌握情况。

特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题

五类比模仿,巩固新知

1、练习:练习题13.

2、思考:习题18.2第5题。

部分学生演板,剩余学生在课堂练习本上独立完成。

小结梳理,内化新知

六1、小结:教师引导学生回忆本节课所学的知识。

2、作业:

(1)必做题:习题18.2第1题(2)(4)和第3题;

(2)选做题:习题18.2第46题。

勾股定理教案 篇六

教学课题:勾股定理的应用

教学时间(日期、课时):

教材分析

学情分析

教 学目标:

能运用勾股定理及直角三角形的判定条件解决实际问题。

在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

教学准备

《数学学与练》

集体备课意见和主要参考资料

页边批注

教学过程

一、 新课导入

本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流 。

创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也滑动 0.5m;如果梯子的顶端滑到地面 上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端 下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题 ,从中感受用数学的眼光审视客观世界的乐趣 。

二、新课讲授

问题一 在上面的情境中,如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?

组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导。

问题二 从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流。

设计问题二促使学生能主动积 极地从数学的角度思考实际问题。教学中学生可能会有多种思考、比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端 下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法、

3、例题教学

课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题。通过这个问题的讨论,把“32 b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32 x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智、

三、巩固练习

1、甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km。

2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点a爬到点b处吃食,要爬行的最短路程( 取3)是( )。

(a)20cm (b)10cm (c)14cm (d)无法确定

3、如图,一块草坪的形状为四边形abcd,其中∠b=90°,ab=3m,bc=4m,cd=12m,ad=13m。求这块草坪的面积。

四、小结

我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角 三角形中的任意两边就可以依据勾股定理求出第三边。从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2 b2=c2”看成一个方程,只要 依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程。

读书破万卷下笔如有神,以上就是差异网为大家整理的6篇《勾股定理教案范本 勾股定理教案教学方法》,能够给予您一定的参考与启发,是差异网的价值所在。

相似教学方法

教学方法推荐

310 91510
网站地图