高中物理的知识点总结6篇-尊龙凯时最新z6com

发布时间:

在我们的学习时代,大家对知识点应该都不陌生吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。还在为没有系统的知识点而发愁吗?下面是差异网整理的6篇《高中物理的知识点总结》,如果能帮助到您,差异网将不胜荣幸。

高中物理的知识点总结 篇一

高中物理公式总结

物理定理、定律、公式表

一、质点的运动(1)------直线运动

1)匀变速直线运动

1、平均速度v平=s/t(定义式) 2.有用推论vt2-vo2=2as

3、中间时刻速度vt/2=v平=(vt vo)/2 4.末速度vt=vo at

5、中间位置速度vs/2=[(vo2 vt2)/2]1/2 6.位移s=v平t=vot at2/2=vt/2t

7、加速度a=(vt-vo)/t {以vo为正方向,a与vo同向(加速)a>0;反向则a<0}

8、实验用推论δs=at2 {δs为连续相邻相等时间(t)内位移之差}

9、主要物理量及单位:初速度(vo):m/s;加速度(a):m/s2;末速度(vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(vt-vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册p19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册p24〕。

2)自由落体运动

1、初速度vo=0 2.末速度vt=gt

3、下落高度h=gt2/2(从vo位置向下计算) 4.推论vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1、位移s=vot-gt2/2 2.末速度vt=vo-gt (g=9.8m/s2≈10m/s2)

3、有用推论vt2-vo2=-2gs 4.上升最大高度hm=vo2/2g(抛出点算起)

5、往返时间t=2vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1、水平方向速度:vx=vo 2.竖直方向速度:vy=gt

3、水平方向位移:x=vot 4.竖直方向位移:y=gt2/2

5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6、合速度vt=(vx2 vy2)1/2=[vo2 (gt)2]1/2

合速度方向与水平夹角β:tgβ=vy/vx=gt/v0

7、合位移:s=(x2 y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2vo

8、水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2) 运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1、线速度v=s/t=2πr/t 2.角速度ω=φ/t=2π/t=2πf

3、向心加速度a=v2/r=ω2r=(2π/t)2r 4.向心力f心=mv2/r=mω2r=mr(2π/t)2=mωv=f合

5、周期与频率:t=1/f 6.角速度与线速度的关系:v=ωr

7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8、主要物理量及单位:弧长(s):米(m);角度(φ):弧度(rad);频率(f):赫(hz);周期(t):秒(s);转速(n):r/s;半径(r):米(m);线速度(v):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1、开普勒第三定律:t2/r3=k(=4π2/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}

2、万有引力定律:f=gm1m2/r2 (g=6.67×10-11nm2/kg2,方向在它们的连线上)

3、天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2 {r:天体半径(m),m:天体质量(kg)}

4、卫星绕行速度、角速度、周期:v=(gm/r)1/2;ω=(gm/r3)1/2;t=2π(r3/gm)1/2{m:中心天体质量}

5、第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=7.9km/s;v2=11.2km/s;v3=16.7km/s

6、地球同步卫星gmm/(r地 h)2=m4π2(r地 h)/t2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,f向=f万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解)

1)常见的力

1、重力g=mg (方向竖直向下,g=9.8m/

s2≈10m/s2,作用点在重心,适用于地球表面附近)

2、胡克定律f=kx {方向沿恢复形变方向,k:劲度系数(n/m),x:形变量(m)}

3、滑动摩擦力f=μfn {与物体相对运动方向相反,μ:摩擦因数,fn:正压力(n)}

4、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5、万有引力f=gm1m2/r2 (g=6.67×10-11nm2/kg2,方向在它们的连线上)

6、静电力f=kq1q2/r2 (k=9.0×109nm2/c2,方向在它们的连线上)

7、电场力f=eq (e:场强n/c,q:电量c,正电荷受的电场力与场强方向相同)

8、安培力f=bilsinθ (θ为b与l的夹角,当l⊥b时:f=bil,b//l时:f=0)

9、洛仑兹力f=qvbsinθ (θ为b与v的夹角,当v⊥b时:f=qvb,v//b时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μfn,一般视为fm≈μfn;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册p8〕;

(5)物理量符号及单位b:磁感强度(t),l:有效长度(m),i:电流强度(a),v:带电粒子速度(m/s),q:带电粒子(带电体)电量(c);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1、同一直线上力的合成同向:f=f1 f2, 反向:f=f1-f2 (f1>f2)

2、互成角度力的合成:

f=(f12 f22 2f1f2cosα)1/2(余弦定理) f1⊥f2时:f=(f12 f22)1/2

3、合力大小范围:|f1-f2|≤f≤|f1 f2|

4、力的正交分解:fx=fcosβ,fy=fsinβ(β为合力与x轴之间的夹角tgβ=fy/fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)f1与f2的值一定时,f1与f2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2、牛顿第二运动定律:f合=ma或a=f合/ma{由合外力决定,与合外力方向一致}

3、牛顿第三运动定律:f=-f{负号表示方向相反,f、f各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4、共点力的平衡f合=0,推广 {正交分解法、三力汇交原理}

5、超重:fn>g,失重:fn

6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册p67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波(机械振动与机械振动的传播)

1、简谐振动f=-kx {f:回复力,k:比例系数,x:位移,负号表示f的方向与x始终反向}

2、单摆周期t=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3、受迫振动频率特点:f=f驱动力

4、发生共振条件:f驱动力=f固,a=max,共振的防止和应用〔见第一册p175〕

5、机械波、横波、纵波〔见第二册p2〕

6、波速v=s/t=λf=λ/t{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

7、声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8、波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9、波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10、多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册p21〕}

注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册p22〕/振动中的能量转化〔见第一册p173〕。

六、冲量与动量(物体的受力与动量的变化)

1、动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3、冲量:i=ft {i:冲量(ns),f:恒力(n),t:力的作用时间(s),方向由f决定}

4、动量定理:i=δp或ft=mvt–mvo {δp:动量变化δp=mvt–mvo,是矢量式}

5、动量守恒定律:p前总=p后总或p=p’也可以是m1v1 m2v2=m1v1 m2v2

6、弹性碰撞:δp=0;δek=0 {即系统的动量和动能均守恒}

7、非弹性碰撞δp=0;0<δek<δekm {δek:损失的动能,ekm:损失的最大动能}

8、完全非弹性碰撞δp=0;δek=δekm {碰后连在一起成一整体}

9、物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1=(m1-m2)v1/(m1 m2) v2=2m1v1/(m1 m2)

10、由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11、子弹m水平速度vo射入静止置于水平光滑地面的长木块m,并嵌入其中一起运动时的机械能损失 e损=mvo2/2-(m m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移} 注:

(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册p128〕。

七、功和能(功是能量转化的量度)

1、功:w=fscosα(定义式){w:功(j),f:恒力(n),s:位移(m),α:f、s间的夹角}

2、重力做功:wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3、电场力做功:wab=quab {q:电量(c),uab:a与b之间电势差(v)即uab=φa-φb}

4、电功:w=uit(普适式) {u:电压(v),i:电流(a),t:通电时间(s)}

5、功率:p=w/t(定义式) {p:功率[瓦(w)],w:t时间内所做的功(j),t:做功所用时间(s)}

6、汽车牵引力的功率:p=fv;p平=fv平 {p:瞬时功率,p平:平均功率}

7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=p额/f)

8、电功率:p=ui(普适式) {u:电路电压(v),i:电路电流(a)}

9、焦耳定律:q=i2rt {q:电热(j),i:电流

强度(a),r:电阻值(ω),t:通电时间(s)}

10、纯电阻电路中i=u/r;p=ui=u2/r=i2r;q=w=uit=u2t/r=i2rt

11、动能:ek=mv2/2 {ek:动能(j),m:物体质量(kg),v:物体瞬时速度(m/s)}

12、重力势能:ep=mgh {ep :重力势能(j),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13、电势能:ea=qφa {ea:带电体在a点的电势能(j),q:电量(c),φa:a点的电势(v)(从零势能面起)}

14、动能定理(对物体做正功,物体的动能增加):

w合=mvt2/2-mvo2/2或w合=δek

{w合:外力对物体做的总功,δek:动能变化δek=(mvt2/2-mvo2/2)}

15、机械能守恒定律:δe=0或ek1 ep1=ek2 ep2也可以是mv12/2 mgh1=mv22/2 mgh2

16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)wg=-δep

注:

(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)o0≤α<90o 做正功;90o<α≤180o做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该

如何解决物理题 篇二

1、会审题,理解题意是正确解答物理习题的前提,要迅速地理解题意,必须抓住题目中的关键字句,找出需要的已知条件和所求的物理量之间的关系,在必要时画出草图帮助理解题意。

2、分析物理过程,一个综合题,往往由若干彼此独立的子过程组合而成,这些过程又不是孤立的,他们之间存在着一定的制约关系,只要仔细分析物理过程,寻找到前后过程的联系,就能找到解决问题的途径。

3、选择合适的方法,从思维的角度看,供选择的方法包括分析法、综合法、假设法、取消法、反证法、递推法等等。从物理的角度看,供选择的方法包括模型化的方法、隔离分析的方法、等效变换的方法、叠加的思想方法、对称处理的方法、极端分析的方法等等。从数学的角度看,有代数法、几何方法,等等。

4、学会运用数学知识,根据物理规律列出问题中物理量的关系式,把物理问题转化为数学问题,实现了物理过程的数学化。列出物理量间的关系后,下面的任务就是采用最好的数学方法,准确地求出结果,注意运算的技巧可以简化运算程序,节省计算时间。

5、讨论验证结果,用量纲的方法检查结果;用数量级估算法检查结果;用特殊值假设法检查结果等。

怎么学习高中物理 篇三

1、端正学习态度

首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会做?我作为学理科的教师有这样的切身感受:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。

要想学好物理,第一条就要好好学习,就是要敢于吃苦,就是要珍惜时间,就是要不屈不挠地去学习。

2、把“陌生”变成“透彻”!

遇到陌生的概念,比如“势能”“电势”“电势差”等等先不要排斥,要先去真心接纳它,再通过听老师讲解、对比、应用理解它。要有一种“不破楼兰誓不还”的决心和“打破沙锅问到底”的研究精神。这样时间长了,应用多了,陌生的就变成了透彻的了。

3、要注意学习上的八个环节

制定计划→课前预习→专心上课→及时复习→独立作业→解决疑难→系统总结→课外学习。这里最重要的是:专心上课→及时复习→独立作业→解决疑难→系统总结,这五个环节。在以上八个环节中,存在着不少的学习方法,下面就针对物理的特点,针对就如何学好物理,这一问题提出几点具体的学习方法。

4、处理好听课和记笔记的关系

有的同学从来就没有记笔记的习惯,这是不好的,特别是对于高中物理学习中是不行的。俗话说“好脑子不如烂笔头”,听课时间有限,老师讲的内容转瞬即逝,我们对知识的记忆随时间延伸会逐渐遗忘,没有笔记我们以后就没有办法进行复习。

高中物理的知识点总结 篇四

一、质点的运动

(1)------直线运动

1)匀变速直线运动

1、平均速度v平=s/t(定义式) 2.有用推论vt2-vo2=2as

3、中间时刻速度vt/2=v平=(vt vo)/2 4.末速度vt=vo at

5、中间位置速度vs/2=[(vo2 vt2)/2]1/2 6.位移s=v平t=vot at2/2=vt/2t

7、加速度a=(vt-vo)/t {以vo为正方向,a与vo同向(加速)a>0;反向则a<0}

8、实验用推论δs=at2 {δs为连续相邻相等时间(t)内位移之差}

9、主要物理量及单位:初速度(vo):m/s;加速度(a):m/s2;末速度(vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(vt-vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点。位移和路程。参考系。时间与时刻;速度与速率。瞬时速度。

2)自由落体运动

1、初速度vo=0 2.末速度vt=gt 3.下落高度h=gt2/2(从vo位置向下计算) 4.推论vt2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1、位移s=vot-gt2/2 2.末速度vt=vo-gt (g=9.8m/s2≈10m/s2)

3、有用推论vt2-vo2=-2gs 4.上升最大高度hm=vo2/2g(抛出点算起)

5、往返时间t=2vo/g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动

(2)----曲线运动、万有引力

1)平抛运动

1、水平方向速度:vx=vo 2.竖直方向速度:vy=gt

3、水平方向位移:x=vot 4.竖直方向位移:y=gt2/2

5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6、合速度vt=(vx2 vy2)1/2=[vo2 (gt)2]1/2

合速度方向与水平夹角β:tgβ=vy/vx=gt/v0

7、合位移:s=(x2 y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2vo

8、水平方向加速度:ax=0;竖直方向加速度:ay=g

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1、线速度v=s/t=2πr/t 2.角速度ω=φ/t=2π/t=2πf

3、向心加速度a=v2/r=ω2r=(2π/t)2r 4.向心力f心=mv2/r=mω2r=mr(2π/t)2=mωv=f合

5、周期与频率:t=1/f 6.角速度与线速度的关系:v=ωr

7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8、主要物理量及单位:弧长(s):(m);角度(φ):弧度(rad);频率(f);赫(hz);周期(t):秒(s);转速(n);r/s;半径(r):米(m);线速度(v):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1、开普勒第三定律:t2/r3=k(=4π2/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}

2、万有引力定律:f=gm1m2/r2 (g=6.67×10-11n?m2/kg2,方向在它们的连线上)

3、天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2 {r:天体半径(m),m:天体质量(kg)}

4、卫星绕行速度、角速度、周期:v=(gm/r)1/2;ω=(gm/r3)1/2;t=2π(r3/gm)1/2{m:中心天体质量}

5、第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=7.9km/s;v2=11.2km/s;v3=16.7km/s

6、地球同步卫星gmm/(r地 h)2=m4π2(r地 h)/t2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:(1)天体运动所需的向心力由万有引力提供,f向=f万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力

(1)常见的力

1、重力g=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2、胡克定律f=kx {方向沿恢复形变方向,k:劲度系数(n/m),x:形变量(m)}

3、滑动摩擦力f=μfn {与物体相对运动方向相反,μ:摩擦因数,fn:正压力(n)}

4、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5、万有引力f=gm1m2/r2 (g=6.67×10-11n?m2/kg2,方向在它们的连线上)

6、静电力f=kq1q2/r2 (k=9.0×109n?m2/c2,方向在它们的连线上)

7、电场力f=eq (e:场强n/c,q:电量c,正电荷受的电场力与场强方向相同)

8、安培力f=bilsinθ (θ为b与l的夹角,当l⊥b时:f=bil,b//l时:f=0)

9、洛仑兹力f=qvbsinθ (θ为b与v的夹角,当v⊥b时:f=qvb,v//b时:f=0)

注:(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μfn,一般视为fm≈μfn;

(4)其它相关内容:静摩擦力(大小、方向);

(5)物理量符号及单位b:磁感强度(t),l:有效长度(m),i:电流强度(a),v:带电粒子速度(m/s),q:带电粒子(带电体)电量(c);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1、同一直线上力的合成同向:f=f1 f2, 反向:f=f1-f2 (f1>f2)

2、互成角度力的合成:

f=(f12 f22 2f1f2cosα)1/2(余弦定理) f1⊥f2时:f=(f12 f22)1/2

3、合力大小范围:|f1-f2|≤f≤|f1 f2|

4、力的正交分解:fx=fcosβ,fy=fsinβ(β为合力与x轴之间的夹角tgβ=fy/fx)

注:(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)f1与f2的值一定时,f1与f2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学

1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2、牛顿第二运动定律:f合=ma或a=f合/ma{由合外力决定,与合外力方向一致}

3、牛顿第三运动定律:f=-f′{负号表示方向相反,f、f′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4、共点力的平衡f合=0,推广 {正交分解法、三力汇交原理}

5、超重:fn>g,失重:fn

6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波

1、简谐振动f=-kx {f:回复力,k:比例系数,x:位移,负号表示f的方向与x始终反向}

2、单摆周期t=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3、受迫振动频率特点:f=f驱动力

4、发生共振条件:f驱动力=f固,a=max,共振的防止和应用

5、机械波、横波、纵波

注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处f引=f斥且分子势能最小;

(5)气体膨胀,外界对气体做负功w<0;温度升高,内能增大δu>0;吸收热量,q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律能源的开发与利用。环保物体的内能。分子的动能。分子势能。

六、冲量与动量

1、动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3、冲量:i=ft {i:冲量(ns),f:恒力(n),t:力的作用时间(s),方向由f决定}

4、动量定理:i=δp或ft=mvt–mvo {δp:动量变化δp=mvt–mvo,是矢量式}

5、动量守恒定律:p前总=p后总或p=p’也可以是m1v1 m2v2=m1v1 m2v2

6、弹性碰撞:δp=0;δek=0 {即系统的动量和动能均守恒}

7、非弹性碰撞δp=0;0<δek<δekm {δek:损失的动能,ekm:损失的最大动能}

8、完全非弹性碰撞δp=0;δek=δekm {碰后连在一起成一整体}

9、物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1=(m1-m2)v1/(m1 m2) v2=2m1v1/(m1 m2)

10、由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11、子弹m水平速度vo射入静止置于水平光滑地面的长木块m,并嵌入其中一起运动时的机械能损失

e损=mvo2/2-(m m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

注:

(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册p128〕。

七、功和能

1、功:w=fscosα(定义式){w:功(j),f:恒力(n),s:位移(m),α:f、s间的夹角}

2、重力做功:wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3、电场力做功:wab=quab {q:电量(c),uab:a与b之间电势差(v)即uab=φa-φb}

4、电功:w=uit(普适式) {u:电压(v),i:电流(a),t:通电时间(s)}

5、功率:p=w/t(定义式) {p:功率[瓦(w)],w:t时间内所做的功(j),t:做功所用时间(s)}

6、汽车牵引力的功率:p=fv;p平=fv平 {p:瞬时功率,p平:平均功率}

7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=p额/f)

8、电功率:p=ui(普适式) {u:电路电压(v),i:电路电流(a)}

9、焦耳定律:q=i2rt {q:电热(j),i:电流强度(a),r:电阻值(ω),t:通电时间(s)}

10、纯电阻电路中i=u/r;p=ui=u2/r=i2r;q=w=uit=u2t/r=i2rt

11、动能:ek=mv2/2 {ek:动能(j),m:物体质量(kg),v:物体瞬时速度(m/s)}

12、重力势能:ep=mgh {ep :重力势能(j),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13、电势能:ea=qφa {ea:带电体在a点的电势能(j),q:电量(c),φa:a点的电势(v)(从零势能面起)}

14、动能定理(对物体做正功,物体的动能增加):

w合=mvt2/2-mvo2/2或w合=δek

{w合:外力对物体做的总功,δek:动能变化δek=(mvt2/2-mvo2/2)}

15、机械能守恒定律:δe=0或ek1 ep1=ek2 ep2也可以是mv12/2 mgh1=mv22/2 mgh2

16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)wg=-δep

注:

(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)o0≤α<90o 做正功;90o<α≤180o做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kwh(度)=3.6×106j,1ev=1.60×10-19j;*(7)弹簧弹性势能e=kx2/2,与劲度系数和形变量有关。

八、分子动理论、能量守恒定律

1、阿伏加德罗常数na=6.02×1023/mol;分子直径数量级10-10米

2、油膜法测分子直径d=v/s {v:单分子油膜的体积(m3),s:油膜表面积(m)2}

3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4、分子间的引力和斥力(1)r

(2)r=r0,f引=f斥,f分子力=0,e分子势能=emin(最小值)

(3)r>r0,f引>f斥,f分子力表现为引力

(4)r>10r0,f引=f斥≈0,f分子力≈0,e分子势能≈0

5、热力学第一定律w q=δu{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

w:外界对物体做的正功(j),q:物体吸收的热量(j),δu:增加的内能(j),涉及到第一类永动机不可造出〔见第二册p40〕}

6、热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册p44〕}

7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处f引=f斥且分子势能最小;

(5)气体膨胀,外界对气体做负功w<0;温度升高,内能增大δu>0;吸收热量,q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册p41〕/能源的开发与利用、环保〔见第二册p47〕/物体的内能、分子的动能、分子势能〔见第二册p47〕。

九、气体的性质

1、气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

热力学温度与摄氏温度关系:t=t 273 {t:热力学温度(k),t:摄氏温度(℃)}

体积v:气体分子所能占据的空间,单位换算:1m3=103l=106ml

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,

标准大气压:1atm=1.013×105pa=76cmhg(1pa=1n/m2)

2、气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3、理想气体的状态方程:p1v1/t1=p2v2/t2 {pv/t=恒量,t为热力学温度(k)}

注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而t为热力学温度(k)。

十、电场

1、两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19c);带电体电荷量等于元电荷的整数倍

2、库仑定律:f=kq1q2/r2(在真空中){f:点电荷间的作用力(n),k:静电力常量k=9.0×109n?m2/c2,q1、q2:两点电荷的电量(c),

r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3、电场强度:e=f/q(定义式、计算式){e:电场强度(n/c),是矢量(电场的叠加原理),q:检验电荷的电量(c)}

4、真空点(源)电荷形成的电场e=kq/r2 {r:源电荷到该位置的距离(m),q:源电荷的电量}

5、匀强电场的场强e=uab/d {uab:ab两点间的电压(v),d:ab两点在场强方向的距离(m)}

6、电场力:f=qe {f:电场力(n),q:受到电场力的电荷的电量(c),e:电场强度(n/c)}

7、电势与电势差:uab=φa-φb,uab=wab/q=-δeab/q

8、电场力做功:wab=quab=eqd{wab:带电体由a到b时电场力所做的功(j),q:带电量(c),

uab:电场中a、b两点间的电势差(v)(电场力做功与路径无关),e:匀强电场强度,d:两点沿场强方向的距离(m)}

9、电势能:ea=qφa {ea:带电体在a点的电势能(j),q:电量(c),φa:a点的电势(v)}

10、电势能的变化δeab=eb-ea {带电体在电场中从a位置到b位置时电势能的差值}

11、电场力做功与电势能变化δeab=-wab=-quab (电势能的增量等于电场力做功的负值)

12、电容c=q/u(定义式,计算式) {c:电容(f),q:电量(c),u:电压(两极板电势差)(v)}

13、平行板电容器的电容c=εs/4πkd(s:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

常见电容器

14、带电粒子在电场中的加速(vo=0):w=δek或qu=mvt2/2,vt=(2qu/m)1/2

15、带电粒子沿垂直电场方向以速度vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平 垂直电场方向:匀速直线运动l=vot(在带等量异种电荷的平行极板中:e=u/d)

抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=f/m=qe/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

3)常见电场的电场线分布要求熟记;

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,

导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:1f=106μf=1012pf;

(7)电子伏(ev)是能量的单位,1ev=1.60×10-19j;

(8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。

十一、恒定电流

1、电流强度:i=q/t{i:电流强度(a),q:在时间t内通过导体横载面的电量(c),t:时间(s)}

2、欧姆定律:i=u/r {i:导体电流强度(a),u:导体两端电压(v),r:导体阻值(ω)}

3、电阻、电阻定律:r=ρl/s{ρ:电阻率(ω?m),l:导体的长度(m),s:导体横截面积(m2)}

4、闭合电路欧姆定律:i=e/(r r)或e=ir ir也可以是e=u内 u外

{i:电路中的总电流(a),e:电源电动势(v),r:外电路电阻(ω),r:电源内阻(ω)}

5、电功与电功率:w=uit,p=ui{w:电功(j),u:电压(v),i:电流(a),t:时间(s),p:电功率(w)}

6、焦耳定律:q=i2rt{q:电热(j),i:通过导体的电流(a),r:导体的电阻值(ω),t:通电时间(s)}

7、纯电阻电路中:由于i=u/r,w=q,因此w=q=uit=i2rt=u2t/r

8、电源总动率、电源输出功率、电源效率:p总=ie,p出=iu,η=p出/p总

{i:电路总电流(a),e:电源电动势(v),u:路端电压(v),η:电源效率}

9、电路的串/并联 串联电路(p、u与r成正比) 并联电路(p、i与r成反比)

电阻关系(串同并反) r串=r1 r2 r3 1/r并=1/r1 1/r2 1/r3

电流关系 i总=i1=i2=i3 i并=i1 i2 i3

电压关系 u总=u1 u2 u3 u总=u1=u2=u3

功率分配 p总=p1 p2 p3 p总=p1 p2 p3

10、欧姆表测电阻

(1)电路组成 (2)测量原理

两表笔短接后,调节ro使电表指针满偏,得

ig=e/(r rg ro)

接入被测电阻rx后通过电表的电流为

ix=e/(r rg ro rx)=e/(r中 rx)

由于ix与rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11、伏安法测电阻

电流表内接法: 电流表外接法:

电压表示数:u=ur ua 电流表示数:i=ir iv

rx的测量值=u/i=(ua ur)/ir=ra rx>r真 rx的测量值=u/i=ur/(ir iv)=rvrx/(rv r)

选用电路条件rx>>ra [或rx>(rarv)1/2] 选用电路条件rx<

12、滑动变阻器在电路中的限流接法与分压接法

限流接法

电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件rp>rx 便于调节电压的选择条件rp

注1)单位换算:1a=103ma=106μa;1kv=103v=106ma;1mω=103kω=106ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为e2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册p127〕。

十二、磁场

1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位t),1t=1n/a?m

2、安培力f=bil;(注:l⊥b) {b:磁感应强度(t),f:安培力(f),i:电流强度(a),l:导线长度(m)}

3、洛仑兹力f=qvb(注v⊥b);质谱仪{f:洛仑兹力(n),q:带电粒子电量(c),v:带电粒子速度(m/s)}

4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动v=v0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)f向=f洛=mv2/r=mω2r=mr(2π/t)2=qvb

;r=mv/qb;t=2πm/qb;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);

解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握;

(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料

十三、电磁感应

1、[感应电动势的大小计算公式]

1)e=nδφ/δt(普适公式){法拉第电磁感应定律,e:感应电动势(v),n:感应线圈匝数,δφ/δt:磁通量的变化率}

2)e=blv垂(切割磁感线运动) {l:有效长度(m)}

3)em=nbsω(交流发电机最大的感应电动势) {em:感应电动势峰值}

4)e=bl2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),v:速度(m/s)}

2、磁通量φ=bs {φ:磁通量(wb),b:匀强磁场的磁感应强度(t),s:正对面积(m2)}

3、感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

*4.自感电动势e自=nδφ/δt=lδi/δt{l:自感系数(h)(线圈l有铁芯比无铁芯时要大),

δi:变化电流,?t:所用时间,δi/δt:自感电流变化率(变化的快慢)}

注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;

(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1h=103mh=106μh。

(4)其它相关内容:自感/日光灯。

十四、交变电流

1、电压瞬时值e=emsinωt 电流瞬时值i=imsinωt;(ω=2πf)

2、电动势峰值em=nbsω=2blv 电流峰值(纯电阻电路中)im=em/r总

3、正(余)弦式交变电流有效值:e=em/(2)1/2;u=um/(2)1/2 ;i=im/(2)1/2

4、理想变压器原副线圈中的电压与电流及功率关系

u1/u2=n1/n2; i1/i2=n2/n2; p入=p出

5、在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(p/u)2r;

(p损′:输电线上损失的功率,p:输送电能的总功率,u:输送电压,r:输电线电阻);

6、公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;b:磁感强度(t);

s:线圈的面积(m2);u输出)电压(v);i:电流强度(a);p:功率(w)。

注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,

当负载的消耗的功率增大时输入功率也增大,即p出决定p入;

(5)其它相关内容:正弦交流电图象/电阻、电感和电容对交变电流的作用。

十五、电磁振荡和电磁波

1.lc振荡电路t=2π(lc)1/2;f=1/t {f:频率(hz),t:周期(s),l:电感量(h),c:电容量(f)}

2、电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}

注:(1)在lc振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大。

高中物理的知识点总结 篇五

一、力和运动

受力分析、物体的平衡及其条件,是每年必考知识点。

预计在2014年高考中,本专题内容仍然是高考命题的重点和热点,从近几年的试题难度看,本专题单独命题,难度可能不大,重在对基础知识与基本应用的考查,其中卫星导航、航天工程、宇宙探测、体育运动、科技与生活热点问题要特别关注。

二、动量和能量

安徽省高考对本专题的知识点考查频率非常高,每年必考,对动能定理、机械能守恒定律、功能关系考查难度较大。

“动量和能量观点是贯穿整个物理学最基本的观点,动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,涉及面广、综合性强、能力要求高,多年的压轴题均与本专题知识有关。”杨坤预计,在2014年高考中,会继续延续近两年的命题特点,一种可能是以功——功率、动能定理和机械能守恒定律为考查热点,主要以选择题的形式出现,考查考生对基本概念、规律的。掌握情况和初步应用的能力。另一种可能是与牛顿运动定律、曲线运动、电场和电磁感应等知识综合起来考查,题型以计算题为主。考题紧密联系生产生活、现代科技等问题,如传送带的功率消耗、站台的节能设计、弹簧中的能量、碰撞中的动量守恒问题等。

三、带电粒子在电场和磁场中的运动

从历年来试题的难度上看,大多属于中等难度和较难的题,考题常以科学技术的具体问题为背景,考查从实际问题中获取并处理信息,解决实际问题的能力。

计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。

“2014年高考理综物理试题仍将突出对电场和磁场中运动的考查,考查形式既可以是选择题也可以是计算题,选择题用来考查场的描述和性质、场力。” 杨坤分析,计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。其中电场和磁场知识与生产技术、生活实际、科学研究相结合,如示波管、质谱仪、回旋加速器、速度选择器和磁流体发电机等物理模型的应用问题要特别注意。

四、电磁感应和电路的分析、计算

在2014年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。

考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题。

从近四年高考试卷知识点分布来看,高考对本专题的内容考查频率比较高,特别是电磁感应部分,每年必考。“对本专题知识点的考查,安徽省高考试题常以选择题的形式出现,但也有以计算题的形式出现的。”杨坤分析,对电路的考查则经常是与实验考查相结合,对串并联电路考查较浅,对交流电的考查相对来说较少而且偏易,对电磁感应的考查相对来说难度偏大,而且经常与其他知识点进行综合考查,不仅考查考生对基础知识和基本规律的掌握,还考查考生对基础知识和基本规律的理解与应用。

“预计在2014年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。”杨坤老师强调,考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题,“在考试说明的题例中增加了滑轨类问题的实例,这或许是一个信号,希望能引起大家的注意。”

五、高中物理常考知识点

1、电压瞬时值e=emsinωt/电流瞬时值i=imsinωt;(ω=2πf)

2、电动势峰值em=nbsω=2blv/电流峰值(纯电阻电路中)im=em/r总

3、正(余)弦式交变电流有效值:e=em/(2)1/2;u=um/(2)1/2 ;i=im/(2)1/2

4、理想变压器原副线圈中的电压与电流及功率关系:u1/u2=n1/n2;i1/i2=n2/n2;p入=p出

5、在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:p损′=(p/u)2r;(p损′:输电线上损失的功率,p:输送电能的总功率,u:输送电压,r:输电线电阻)(见第二册p198)

6、公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;b:磁感强度(t);s:线圈的面积(m2);u:(输出)电压(v);i:电流强度(a);p:功率(w)。

注:

(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即p出决定p入;

(5)其它相关内容:正弦交流电图象(见第二册p190)/电阻、电感和电容对交变电流的作用(见第二册p193)。

六、高中物理知识点

机械运动:一物体相对其它物体的位置变化,叫机械运动;

1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

2、质点:只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

如:研究地球绕太阳运动,火车从北京到上海;

3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

4、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

6、速度是表示质点运动快慢的物理量;

(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

7、加速度:是描述物体速度变化快慢的物理量;

(1)加速度的定义式:a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

匀变速直线运动的规律:

1、速度:匀变速直线运动中速度和时间的关系:vt=v0 at

注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

2、位移:匀变速直线运动位移和时间的关系:s=v0t 1/2at

注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

3、推论:2as=vt2-v02

4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=at2

5、初速度为零的匀加速直线运动:前1秒,前2秒,位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒的位移与时间的关系是:位移之比等于奇数比。

自由落体运动:只在重力作用下从高处静止下落的物体所作的运动;

1、位移公式:h=1/2gt2

2、速度公式:vt=gt

3、推论:2gh=vt2

高中物理知识点总结 篇六

一、力物体的平衡

1、力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。 力是矢量。

2、重力 (1)重力是由于地球对物体的吸引而产生的。

〔注意〕重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。

但在地球表面附近,可以认为重力近似等于万有引力

(2)重力的大小:地球表面g=mg,离地面高h处g/=mg/,其中g/=[r/(r h)]2g

(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。

3、弹力 (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。

(2)产生条件:①直接接触;②有弹性形变。

(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面;

在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。

①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。

②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。

(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。

★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即f=kx。k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是n/m。

4、摩擦力

(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。

(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。

(3)判断静摩擦力方向的方法:

①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。

②平衡法:根据二力平衡条件可以判断静摩擦力的方向。

(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。

①滑动摩擦力大小:利用公式f=μf n 进行计算,其中fn 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。

②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。

5、物体的受力分析

(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。

(2)按“性质力”的顺序分析。即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析。

(3)如果有一个力的方向难以确定,可用假设法分析。先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态。

6、力的合成与分解

(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力。(2)力合成与分解的根本方法:平行四边形定则。

(3)力的合成:求几个已知力的合力,叫做力的合成。

共点的两个力(f 1 和f 2 )合力大小f的取值范围为:|f 1 -f 2 |≤f≤f 1 f 2 。

(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算)。

在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法。

7、共点力的平衡

(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力。

(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态。

(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑f=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑fx =0,∑fy =0。

(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等。

二、直线运动

1、机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式。为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动。

2、质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型。仅凭物体的大小不能做视为质点的依据。

3、位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量。路程是物体运动轨迹的长度,是标量。

路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程。

4、速度和速率

(1)速度:描述物体运动快慢的物理量。是矢量。

①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述。

②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧。瞬时速度是对变速运动的精确描述。

(2)速率:①速率只有大小,没有方向,是标量。

②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率。在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等。

5、加速度

(1)加速度是描述速度变化快慢的物理量,它是矢量。加速度又叫速度变化率。

(2)定义:在匀变速直线运动中,速度的变化δv跟发生这个变化所用时间δt的比值,叫做匀变速直线运动的加速度,用a表示。

(3)方向:与速度变化δv的方向一致。但不一定与v的方向一致。

〔注意〕加速度与速度无关。只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大。

6、匀速直线运动 (1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动。

(2)特点:a=0,v=恒量。 (3)位移公式:s=vt。

7、匀变速直线运动 (1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动。

(2)特点:a=恒量 (3)★公式: 速度公式:v=v0 at 位移公式:s=v0t at2

速度位移公式:vt2-v02=2as 平均速度v=

以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“ ”值,跟正方向相反的取“-”值。

8、重要结论

(1)匀变速直线运动的质点,在任意两个连续相等的时间t内的位移差值是恒量,即

δs=sn l –sn=at2 =恒量

(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:

9、自由落体运动

(1)条件:初速度为零,只受重力作用。 (2)性质:是一种初速为零的匀加速直线运动,a=g。

(3)公式:

10。运动图像

(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;

②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;

③图像与横轴交叉,表示物体从参考点的一边运动到另一边。

(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;

②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值。

③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率。

④图线与横轴交叉,表示物体运动的速度反向。

⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。

三、牛顿运动定律

★1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。

(1)运动是物体的一种属性,物体的运动不需要力来维持。

(2)定律说明了任何物体都有惯性。

(3)不受力的物体是不存在的。牛顿第一定律不能用实验直接验证。但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。

(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。

2、惯性:物体保持匀速直线运动状态或静止状态的性质。

(1)惯性是物体的。固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关。因此说,人们只能“利用”惯性而不能“克服”惯性。(2)质量是物体惯性大小的量度。

★★★★3。牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式f 合 =ma

(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。

(2)对牛顿第二定律的数学表达式f 合 =ma,f 合 是力,ma是力的作用效果,特别要注意不能把ma看作是力。

(3)牛顿第二定律揭示的是力的瞬间效果。即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。

(4)牛顿第二定律f 合 =ma,f合是矢量,ma也是矢量,且ma与f 合 的方向总是一致的。f 合 可以进行合成与分解,ma也可以进行合成与分解。

4、 ★牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。

(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失。(2)作用力和反作用力总是同种性质的力。

(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加。

5、牛顿运动定律的适用范围:宏观低速的物体和在惯性系中。

6、超重和失重

(1)、重:物体有向上的加速度称物体处于超重。处于超重的物体对支持面的压力f n (或对悬挂物的拉力)大于物体的重力mg,即f n =mg ma。(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力fn(或对悬挂物的拉力)小于物体的重力mg。即fn=mg-ma。当a=g时f n =0,物体处于完全失重。(3)对超重和失重的理解应当注意的问题

①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力。②超重或失重现象与物体的速度无关,只决定于加速度的方向。“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重。

③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等。

6、处理连接题问题----通常是用整体法求加速度,用隔离法求力。

四、曲线运动 万有引力

1、曲线运动

(1)物体作曲线运动的条件:运动质点所受的合外力(或加速度)的方向跟它的速度方向不在同一直线 (2)曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向。质点的速度方向时刻在改变,所以曲线运动一定是变速运动。

(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等。

2、运动的合成与分解

(1)合运动与分运动的关系:①等时性;②独立性;③等效性。

(2)运动的合成与分解的法则:平行四边形定则。

(3)分解原则:根据运动的实际效果分解,物体的实际运动为合运动。

3、 ★★★平抛运动

(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动。

(2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

①建立直角坐标系(一般以抛出点为坐标原点o,以初速度vo方向为x轴正方向,竖直向下为y轴正方向);

②由两个分运动规律来处理(如右图)。

4、圆周运动

(1)描述圆周运动的物理量

①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向

②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度。其方向在中学阶段不研究。

③周期t,频率f ---------做圆周运动的物体运动一周所用的时间叫做周期。

做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率。

⑥向心力:总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小。大小 〔注意〕向心力是根据力的效果命名的。在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力。

(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动。

(3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小)。一般而言,合加速度方向不指向圆心,合力不一定等于向心力。合外力在指向圆心方向的分力充当向心力,产生向心加速度;合外力在切线方向的分力产生切向加速度。 ①如右上图情景中,小球恰能过最高点的条件是v≥v临 v临由重力提供向心力得v临 ②如右下图情景中,小球恰能过最高点的条件是v≥0。

它山之石可以攻玉,以上就是差异网为大家整理的6篇《高中物理的知识点总结》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在差异网。

316 2122
网站地图