比例的应用【10篇】-尊龙凯时最新z6com

发布时间:

作为一名老师,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么大家知道正规的教案是怎么写的吗?以下内容是差异网为您带来的10篇《比例的应用》,希望能够对困扰您的问题有一定的启迪作用。

小学数学六年级《比例的应用》教案 篇一

教学目标:

1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

3.培养学生的判断分析推理能力。

教学重点:

使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:

学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

一、旧知铺垫

1.下面各题两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从甲地到乙地,行驶的速度和时间。

(3)每块地砖的面积一定,所需地砖的块数和所铺面积。

(4)书的总本数一定,每包的本数和包装的包数。

过程要求

①说一说两种量的变化情况。

②判断成什么比例。

③写出关系式。

2.根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

二、创设情境引入内容

1.出示例5

画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?

学生回答后引出求水费的实际问题。

你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。

引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

明确

因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

学生讨论交流

演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?

要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。

2.出示例题6的场景。

同样先让学生用已学过的方法解答,然后学习用比例的知识解答。

师:想一想,如果改变题目的条件和问题该怎样解答?

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。

让学生演示解题过程,集体修正。

3.完成做一做,直接让学生用比例的知识解答

问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。

总结应用比例知识解答问题的步骤

(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。

(2)依据正比例或反比例意义列出方程。

(3)解方程(求解后检验),写答。

比例的应用 篇二

(用比例解决问题)

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从a地到b地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从a地到b地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

3.比例的应用(比例尺)

教学内容:教科书第6~8页的例4~例6,练习二的第1题。

教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

教学难点:设未知数时长度单位的使用。

教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。

教学过程:

一、复习

1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。

1米=(    )分米=(     )厘米=(      )毫米

1千米=(     )米=(      )厘米

2.什么叫做比?

3.化简下面各比。        12 :8          10厘米:100厘米

2米:140厘米    3米:15千米        16厘米:90千米

二、新课

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

1.教学比例尺的意义。

(1)教学例4。

设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

让学生读题。指名回答:

“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)

“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离

“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:

图上距离 :实际距离

10厘米 :    10米

“10厘米和10米的单位相同吗?能直接化简吗?”

教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)

“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。

“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式:

图上距离 :实际距离

10  :  1000

请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。

然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或

图上距离 =比例尺

实际距离

图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。

教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出:

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1o厘米:1o米,要把后项的米化成厘米后再算出比例尺。

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=

(2)巩固练习。

让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。

2.教学根据比例尺求图上距离或实际距离。

教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。

(1)教学例5。

在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?

指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)

教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。

“这道题的图上距离是多少?”板书:15

“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。

“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。

“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:

15 =    1

x  60000《差异网·www.chayi5.com》00

指定一名学生到前面求x的值,其他学生在练习本上做。订正后,回答:

“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。

之后,再回忆一下解答过程。

(2)巩固练习。

做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。

(3)教学例6。

出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米?

指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)

教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?

然后让学生求x的值,并说出求解过程,教师板书出来。

“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

三、练习

1、比例尺=(         )          实际距离=(                )              图上距离=(                 )

2.2.5米=(         )厘米         0.00006千米=(            )厘米      0.032米=(        )厘米             350000厘米=(             )千米              3.5千米=(           )厘米

1、 独立完成练习二第1题,并订正。

2、 完成练习二的第2题、3题。

第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。

2、正比例和反比例的意义

第一课时

教学内容:p39~41  成正比例的量

教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

教学重点:成正比例的量的特征及其判断方法。

教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

教学过程:

一、四顾旧知,复习铺垫

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

二、引导探索,学习新知

1、教学例1:

出示:一列火车1小时行驶90千米,2小时行驶180千米,

3小时行驶270千米,4小时行驶360千米,

5小时行驶450千米,6小时行驶540千米,

7小时行驶630千米,8小时行驶720千米……

(1)出示下表,填表

一列火车行驶的时间和路程

时间

路程

填表,思考:在填表中你发现了什么?

时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)

根据计算,你发现了什么?

相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

用式子表示他们的关系是:路程/时间=速度(一定)(板书)

(2)教师小结:

同学们通过填表,交流,知道时间和路程是。两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

2、教学例2:

(1)花布的米数和总价表

数量 1 2 3 4 5 6 7 ……

总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……

(2)观察图表,发现什么规律?

用式子表示它们的关系:总价/米数=单价(一定)

3、抽象概括正比例的意义。

(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?

(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

(3)看书p39,进一步理解正比例的意义。

(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

x/y=k(一定)

(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

4、看书p40例2。

(1)题中有几种量?哪两种量是相关联的量?

(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

(3)它们的数量关系式是什么?

(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

四、课堂练习:

1、p41做一做

2、p43~44练习七第1~5题。

第二课时

教学内容:p42  成反比例的量

教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

3、初步渗透函数思想。

教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

教学难点:利用反比例的意义,正确判断两个量是否成反比例。

教学过程:

一、复习铺垫

1、下面两种量是不是成正比例?为什么?

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

2、成正比例的量有什么特征?

二、探究新知

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。

2、教学p42例3。

(1)引导学生观察上表内数据,然后回答下面问题:

a、表中有哪两种量?这两种量相关联吗?为什么?

b、水的高度是否随着底面积的变化而变化?怎样变化的?

c、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

d、这个积表示什么?写出表示它们之间的数量关系式

(2)从中你发现了什么?这与复习题相比有什么不同?

a、学生讨论交流。

b、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:y=k(一定)

三、巩固练习

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

四、全课小节

这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习

p45~46练习七第6~11题。

第三课时

教学内容:正比例和反比例的比较

教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。

2、使学生能正确判断正、反比例。

3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。

教学难点:正反比例的联系和区别 。

教学重点:能判断正、反比例。

教学过程:

一、复习:

判断:下面每组中的两个量成什么关系?

1、单价一定,数量和总价。

2、路程一定,速度和时间。

3、正方形的边长和它的面积。

4、时间一定,工效和工作总量。

二、新知:

1、出示课题:

2、教学补充例题

出示表1

路程(千米) 5 10 25 50 100

时间(时) 1 2 5 10 20

表2

速度(千米/时) 100 50 20 10 5

时间(时) 1 2 5 10 20

分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。

总结路程、速度、时间三个量中每两个量之间的比例关系。

速度×时间=路程    =速度   =时间

判断:

(1)速度一定,路程和时间成什么比例?

(2)路程一定,速度和时间成什么比例?

(3)时间一定,路程和速度成什么比例?

3、比较正比例、反比例的关系

正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。

不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。

三、巩固练习

1、做一做

判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?

单价一定,数量和总价—

总价一定,数量和单价—

数量一定,总价和单价—

2.判断下面一些相关联的量成什么比例?为什么?

(1)除数一定,        和       成       比例。

被除数—定,       和       成       比例。

(2)前项一定,       和       成       比例。

(3)后项一定,       和       成       比例。

(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。

比例的应用 篇三

教学目标

1.使学生能正确判断应用题中涉及的量成什么比例关系。

2.使学生能利用正、反比例的意义正确解答应用题。

3.培养学生的判断推理能力和分析能力。

教学重点

使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。

教学难点

利用正反比例的意义正确列出等式。

教学过程

一、复习准备。(课件演示:)

(一)判断下面每题中的两种量成什么比例关系?

1.速度一定,路程和时间。

2.路程一定,速度和时间。

3.单价一定,总价和数量。

4.每小时耕地的公顷数一定,耕地的总公顷数和时间。

5.全校学生做操,每行站的人数和站的行数。

(二)引入新课

我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习。

教师板书

二、新授教学.

(一)教学例1(课件演示:)

例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

1.学生利用以前的方法独立解答。

140÷2×5

=70×5

=350(千米)

2.利用比例的知识解答。

(1)思考:这道题中涉及哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?

怎么列出等式?

解:设甲乙两地间的公路长 千米。

2 =140×5

=350

答:两地之间的公路长350千米。

3.怎样检验这道题做得是否正确?

4.变式练习

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(二)教学例2(课件演示:)

例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?

1.学生利用以前的方法独立解答。

70×5÷4

=350÷4

=87.5(千米)

2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,_________和_________成_________比例。

所以两次行驶的_________和_________的_________是相等的。

3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?

4 =70×5

=87.5

答:每小时需要行驶87.5千米。

4.变式练习

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米,需要几小时到达?

三、课堂小结。

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

四、课堂练习。(课件演示:)

(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

(二)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。

1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?

2.王师傅4小时生产了200个零件,照这样计算,_______?

五、课后作业 .

1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?

3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

六、板书设计。

教案点评:

本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。

在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。

探究活动

鱼池有多少条鱼?

活动目的

1.培养学生应用所学知识解决实际问题的能力。

2.培养学生的判断推理能力和分析能力。

活动形式

以小组为单位讨论。

活动题目

养鱼场有很多鱼池,要知道一个鱼池有多少条鱼。渔业人员想出了一个巧妙的办法,他们先在一个鱼池里捞起30条鱼来,给每条鱼做个记号,然后把它们放回鱼池里。鱼回到水里,向四面八方游开了,过了几天,这30条鱼就平均分布在鱼池的各个地方。渔业人员又在这个水池里捞起50条鱼来,如果其中有2条带记号的鱼,就可以算出这个池里大约有多少条鱼。为什么?

活动过程

1.学生分小组讨论原因。

2.学生汇报讨论结果。

3.讲述生活中应用比例知识的事例。

参考答案

解:设水池里面共有 条鱼。

=750

答:水池里面共有750条鱼。

比例的应用 篇四

教学目标

一、知识目标

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生能利用正、反比例的意义正确解答应用题。

二、能力目标

1、培养学生的判断推理能力。

2、培养学生的分析能力。

三、情感目标

1、引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。

2、对学生继续进行辨证唯物主义观点的启蒙教育。

3、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识。

教学重点

使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。

教学难点

利用正反比例的意义正确列出等式。

教学步骤

一、铺垫孕伏(课件演示:)

判断下面每题中的两种量成什么比例关系?

1、速度一定,路程和时间。

2、路程一定,速度和时间。

3、单价一定,总价和数量。

4、每小时耕地的公顷数一定,耕地的总公顷数和时间。

5、全校学生做操,每行站的人数和站的行数。

二、探究新知

(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习。(板书:)

(二)教学例1(课件演示:)

例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

1、学生利用以前的方法独立解答。

140÷2×5

=70×5

=350(千米)

2、利用比例的知识解答。

思考:这道题中涉及哪三种量?(路程、时间和速度三种量)

哪种量是一定的?你是怎样知道的?(“照这样的速度”就是说速度一定。)

行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系。)

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?(比值相等)

怎么列出等式?

解:设甲乙两地间的公路长x千米。

2x=140×5

x=350

答:两地之间的公路长350千米。

3、怎样检验这道题做得是否正确?

4、变式练习

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(三)教学例2(课件演示:)

例2  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?

1、学生利用以前的方法独立解答。

70×5÷4

=350÷4

=87.5(千米)

2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,__________和__________成__________比例。所以两次行驶的__________和__________的__________是相等的。

3、如果设每小时需要行驶x千米,根据反比例的意义,谁能列出方程?

4x=70×5

答:每小时需要行驶87.5千米。

4、变式练习

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米,需要几小时到达?

三、全课小结

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

四、随堂练习(课件演示:)

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

3、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?

(2)王师傅4小时生产了200个零件,照这样计算,__________?

五、布置作业

1、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?

3、某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

六、板书设计

例1 140÷2×5 例2 70×5÷4

=70×5 =350×4

=350(千米) =87.5(千米)

速度一定,路程和时间成正比例 路程一定,速度和时间成反比例

解:设甲乙两地之间的公路长x千米 解:设每小时需要行驶x千米

4x=70×5

2x=140×5

x=350 x=87.5

答:甲乙两地之间的公路长350千米。 答:每小时需要行驶87.5千米

《比例的应用》教学设计 篇五

教学目标:

1、能正确的判断应用题中涉及到的量成什么比例关系。

2、能正确的用比例的知识解答比较简单的应用题。

3、培养学生的分析、判断和推理能力。

教学重点:

正确的判断应用题中的数量关系之间存在着什么样的比例关系。

教训难点:

能根据正比例、反比例的意义列出含有未知数的等式。

教学过程:

一、实际操作,引入新知识。

(1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

(2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

(3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

(4)你是怎样算的,可以列出式子吗?

二、教学例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?

1、指导分析,理解题意。

2、学生自己想办法解答。

3、师生探究用比例的知识解答。

a、这道题中涉及到的量有哪些?

b、哪种量一定(不变)?从哪里知道的?

c、路程和时间成什么比例关系?判断的依据是什么?

d、如果我们把甲乙两地之间的公路长看着x千米,那么我们根据正比例的意义可以列出一个怎样的方程?

2小时和140千米相对应,5小时和x千米相对应,即可以列出比例:140 :2=x :5

e、学生列式并解答。

f、说说怎样检验我们的计算结果呢?

4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?

学生自己解答,老师及时收集和处理反馈信息。

三、教学例2

一辆汽车从甲地开往乙地,每小时行驶70千米, 5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?

1、引导分析,理解题意,找到相关的量。

2、准确判断它们成什么比例关系。

3、学生解答,及时收集和处理反馈信息。

比较例1、例2的异同。

四、小结:

用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

比例尺的应用 篇六

教学内容:教科书第49页的例7,完成随后的“练一练”和练习十一的第3、5题。

教学目标:

1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。

教学重点、难点:能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。

教学准备:教学光盘、了解家到学校的大概距离

教学过程

一、复习导入。

1、什么叫比例尺?求比例尺时要注意哪些问题?

2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?

二、教学新课

1、教学例7。

(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)

(2)说一说比例尺1:8000所表示的意义。

(3)根据对1:8000的理解让学生尝试练习。

(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。

重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?

注意:最后的单位要换算成“米”作单位的数。

2、做“试一试”。

(1)独立算出学校到医院的图上距离。

(2)讨论怎样把医院的位置在图上表示出来。

(3)在图中表示医院的位置。

三、巩固练习。

1、做“练一练”先独立解题,在组织交流

2、做练习十一第4题

重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。

3、  做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

4、  将下列各题做在课堂作业本上。

(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?

(2)在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12.5厘米。甲、乙两城实际相距多少千米?          0       40       80     120千米

(3)在一幅比例尺为                           的地图上,小丽量得某省会城市与北京的距离是32.5厘米。这个城市与北京相距多远?

(4)做练习十一第3题。

(5)学生阅读“你知道吗”,选择两个比例尺说说它们的实际意义。

四、全课小结。

通过本课的学习,你又掌握了什么新的本领?

五、课堂作业

完成补充习题的相关练习

板书设计:

比例尺的应用

5×8000=40000(厘米)       解:设明华小学到少年宫的实际距离是x厘米。

40000厘米=400米              5:x=1:8000

x=40000

40000厘米=400米

答:明华小学到少年宫的实际距离是400米。

课前思考:

这节课是学生在掌握了比例尺的含义的基础上展开的,让学生根据比例尺的意义来求实际距离或者是图上距离。解决这类问题学生会有不同的方法,应该允许他们按照自己的思考方法进行解答。在引导学生进一步理解不同算法时,特别要引导学生理解和掌握用比例式求实际距离的方法,帮助学生把握不同算法之间的联系。

根据比例尺=图上距离:实际距离以及学生的不同解法,可以归纳如下:

图上距离=实际距离×比例尺

实际距离=图上距离÷比例尺

在计算的过程中关键还是要让学生注意单位的统一。在用解比例的方法求实际距离时,要和学生强调解设中单位还应该是厘米,因为图上距离的单位就是厘米,所以要统一。

课前思考:

对比例尺意义的理解是解答这类问题的关键,在理解比例尺时,一定要结合图形的放大与缩小,这样有助于学生对解题方法的掌握。

教材上介绍了3种解题思路,但我觉得前两种的思考方法是一样的。且第2种思路中“比例尺1:8000,也就是图上1厘米,表示实际距离80米”,这样的理解有跳跃性,我觉得还是让学生理解为“图上1厘米,表示实际距离8000厘米”,最后让学生看问题所求的单位名称与计算结果是否一致,如果不一样,需要统一单位,这样学生比较好理解。

用比例的方法来解答这类问题,可能学生对这样的解法和方程解有一样的感觉,怕麻烦!但作为一种新的解题思路,必须让学生掌握,所以今天的课堂教学中,我准备让学生这两种思路都掌握。在以后的练习中,如果题目没有要求解题方法,那么学生可以用自己喜欢的方式来解答。

沈老师提出对比例尺的变式,我觉得不要介绍的好,学生只要用比例尺意义来理解,要么体会到是放大与缩小,用倍数来解答,要么根据比例尺列比例式解答。因为在变式中是将比例尺看作一个数来理解了,但学生印象中的比例尺是一个比。这个思维的跳跃太大了!我在前几年六年级教学中使用过这种方法,效果不好!

课前思考:

潘老师设计的教案总体的教学思路是非常清晰的,我基本采用这一教学设计。由于刚放过三天假期,所以我想大部分学生对于放假前学习的“比例尺”这一部分知识应该遗忘得差不多了。那么在课始部分我们就可以借助复习题帮助学生复习比例尺的意义,以及两种不同的比例尺的意义。

教学例题7时,学生们一般都喜欢根据比例尺的意义用算术方法来求出实际距离。而用列比例式求实际距离的方法,学生不太容易想到。课上需要教师引导学生思考,这里要关注学习困难生的学习情况,当列出比例式后,可以再让学生说说比例式中的两个比分别是表示哪两个数量的倍比关系,为什么它们可以组成比例式等。

练习十一的第5题是让学生自己确定比例尺,课前需要学生了解自己家离学校大约有多少千米,还需要指导学生量一量教材上第5题的这个长方形的长、宽分别是多少,然后再确定比例尺。

练习十一的第4题也需学生自己去准备一张中国地图,可以让学生自己来编一道实际问题。由于学生所准备的中国地图的比例尺是不同的,图上测得的上海到北京的距离也是不同的,但通过计算学生会发现上海到北京的实际距离却是相同的。

课后反思:

上完这节课,感觉自己课前的准备工作做的不够充分,没有仔细阅读教材。虽然解决这类问题学生会有不同的方法,而且学生基本上都会用计算。但是这节课还是在于引导学生进一步理解和掌握用比例式求实际距离或图上距离的方法。从学生完成的作业质量来看,一开始很有必要让学生用比例式来求实际距离或者图上距离。因为尽管课上一再强调在解设的时候一定要注意单位,但是在练习中仍然有很多学生没有注意。在学生熟练了以后,接下来的练习就让学生选择自己喜欢的方法去完成。

其次,我本来认为根据比例尺的定义可以得出:图上距离=实际距离×比例尺 ;实际距离=图上距离÷比例尺这两个公式,正如高教导所说上完两节课后,感觉在实际解决问题的过程中根本不需要学生去记忆,学生自己理解了比例尺的含义之后,自然而然会解决。如果强行让学生去记忆,太匡死学生的思维了。

在练习的过程中有时候需要求长方行草坪的面积或者是操场的实际面积,但是题中却没有明确具体的单位,有的学生用平方厘米做单位,有的学生用平方米做单位,我和学生讨论后的想法是是因为没有明确要求,两种答案都可以,但是与实际生活联系起来,用平方米做单位更恰当些,不知道这样的处理是否恰当。

课后反思:

应该说现在的教材中关于比例尺的应用凸显了比例尺的含义的理解,当学生对比例尺的含义真正理解了,那么他们就会灵活运用比例尺的含义来解决相关的实际问题。课堂上在学习例题7时,两个班中的大部分学生都马上想到了根据比例尺1:8000,说明图上距离是实际距离的8000倍,那么从题中已知的明华小学到少年宫的图上距离是5厘米就可以指导实际距离是5厘米的8000倍,所以很多学生都用5乘8000来计算。这样的计算方法比较简便而且容易理解。如果老师不规定他们用比例来解的话,一般学生都不会去主动选择这种方法。课上,我也没有特别强调后一种方法,但在作业中我请学生用解比例的方法来解决其中一题。结果发现在设实际距离时出现单位名称不统一的情况,也就是说将两个单位名称不一致的数组成了比。这一问题要及时解决,还是要引导学生从比例尺的意义来分析错在什么地方。还有不少学生直接根据图上距离和实际距离的倍比关系来列算式计算,应该说这种方法是最简便的,但在书写格式方面可能存在一些问题,如150千米除以5厘米等于30千米,这样的表达值得探讨。不知这样书写的学生是否真的理解这一算式的实际意义是图上1厘米表示实际30千米。

沈薇老师谈到的操场的实际面积的单位名称,我想结合生活实际学生们能理解应该用平方米比较合适,只是在解答时往往由于懒于改写单位名称就出现了用平方厘米表示操场的实际面积,这样做不能算错,但显然不合适。

课后反思:

今天的课上得很郁闷,不知道是不是由于是假期后的第一节课,课堂气氛比较沉闷,有的环节出现了包办代替的现象,这是本节课的最大遗憾。

在今后的教学中,一定要真正让学生参与到教学中来,把属于学生的时间还给学生,让学生有充足的时间去思考、交流、合作,使学生由知识的被动接受为自主探究,从而获得知识。

课后反思:

在课堂教学时,加强了对比例尺的意义的理解。在例题教学中,正如我课前预计的那样,学生都是根据图上距离与实际距离的倍数关系来列式解答的,并且两种想法就是教材上介绍的方法,学生的第2种解法比教材上更完整(先单位换算,统一单位后再进行计算)。没有学生想到用比例解答。于是在我的引导下,马上有部分头脑灵活的学生首先认识到第3种方法。于是我接着就强调了比例解的书写格式与注意点,提出用比例解的必要性。在巩固练习中,我要求学生用两种方法解其中必须有一种是比例解,所以在解答时花费了很多时间,但我觉得这个时间花得值得。因为有了两种不同的解题思路的训练,学生对每种列式的依据比较清晰。

课后与同组老师谈论了孙老师提出的疑义,我认为是正确的,学生对比例尺的含义理解到位,这样的解法是最简便的。

比例尺的应用 篇七

教学内容p49、50“练一练”和练习十一的第3、4、5题教学要求1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。教学重点、难点重点:能按给定的比例尺求相应的实际距离或图上距离。难点:能按给定的比例尺求相应的实际距离或图上距离。教学准备电脑课件、投影仪 教 学 过 程师生双边活动改进意见一、复习旧知,引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?2、什么叫比例尺?求比例尺时要注意哪些问题?二、理解明确,实践运用出示例7,明确题意:找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。2、分析比例尺1:8000所表示的意义。引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。3、尝试列式根据对1:8000的理解你能尝试列出算式吗?师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)4、归纳、选择、教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。5、练习教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?三、尝试练习,巩固提高1、做“试一试”。先选择自己合适的方法算出学校到医院的图上距离。再引导学生 讨论怎样把医院的位置在图上表示出来。2、做“练一练”先独立解题,在组织交流3、做练习十一第4题引导学生在地图上测两地之间的距离和在地图上如何找比例尺。3、  做练习十一第5题。引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。四、全课总结,回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?2、你还有什么疑问,或你能给同学提出什么新问题?五、知识拓展,激发兴趣p51“你知道吗?”1、收集地图资料,展示给学生观看。2、介绍国家基本比例尺地图。            学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。学生可能出现的方法:1、5×8000=40000……           2、 5×80=400……3、 5/x=1/8000…… 板书设计比例尺的应用 自我满意度:a满意(     )b基本满意(     )c不满意(     )d特别不满意(     )

小学数学六年级《比例的应用》教案 篇八

教学目标:

1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

2、能根据实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

教学重点、难点:

重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

难点:根据实际问题中的条件确定反比例函数的解析式

教学过程:

一、情景创设:

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例。药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后关于x的函数关系式为_______。

(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

(3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

二、新授:

例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?

(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

例2某自来水公司计划新建一个容积为的长方形蓄水池。

(1)蓄水池的底部s与其深度有怎样的函数关系?

(2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?

(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

三、课堂练习

1、一定质量的氧气,它的密度(g/3)是它的体积v(3)的反比例函数,当v=103时,=1.43g/3.(1)求与v的函数关系式;(2)求当v=23时求氧气的密度。

2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度。本年度计划将电价调至0.55元至0.75元之间。经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.

(1)求与x之间的函数关系式;

(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=(实际电价-成本价)×(用电量)]

3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=。求与x之间的函数关系式及自变量x的取值范围。

四、小结

五、作业

30.3——1、2、3

《比例的应用》教学设计 篇九

教学内容:

义务教育课程标准实验教科书数学六年级下册p49、50“练一练”和练习十一的第3、4、5题

教学目标:

1、使学生在理解线段比例尺含义的'基础上,能按给定的比例尺求相应的实际距离或图上距离。

2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

教学重点:

能按给定的比例尺求相应的实际距离或图上距离。

教学难点:

能按给定的比例尺求相应的实际距离或图上距离。

设计理念:

本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。

教学步骤

教师活动学生活动

一、复习旧知

引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?

2、什么叫比例尺?求比例尺时要注意哪些问题?

学生练习,找出图上距离与实际距离,再写出比例尺。

二、理解明确

实践运用

1、出示例7,明确题意

找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

2、分析比例尺1:8000所表示的意义。

引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。

3、尝试列式

根据对1:8000的理解你能尝试列出算式吗?

师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)

4、归纳、选择、

教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

5、练习

教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?

学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

学生分析1:8000表示的意义。

学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

学生可能出现的方法:

1、5×8000=40000……2、5×80=400……

3、5/x=1/8000……

图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

学生列式5/x=1/8000并计算。

三、尝试练习

巩固提高1、做“试一试”。

先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。

2、做“练一练”先独立解题,在组织交流

3、做练习十一第4题

引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

3、做练习十一第5题。

引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

学生练习

在图中表示医院的位置。

学生练习后交流

四、全课总结

回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?

2、你还有什么疑问,或你能给同学提出什么新问题?

五、知识拓展

激发兴趣p51“你知道吗?”

1、收集地图资料,展示给学生观看。

2、介绍国家基本比例尺地图。

学生观看

阅读后适当交流

比例尺的应用 篇十

(六数)教学内容:苏教版小学数学第12册37——38页例5、练一练及练习七的第4——8题。教学目标:

1、理解比例尺的概念,能正确、熟练地进行求比例尺计算。 2、掌握根据比例尺求图上的距离或实际距离的方法。

3、培养学生对知识的灵活运用能力,从中感悟到比例尺在实际生活中的重要性。教学重点:根据比例尺的意义求图上距离或实际距离教学难点:设未知数时单位的正确使用教学准备:多媒体课件1套,学具图若干张。教学过程:一、创设情境,揭示课题

1、创设情境:播放歌曲《春天在哪里》,教师在音乐中朗诵描写奏的诗歌,音乐停

,师问:你感受到了什么?有什么想法?(感受到春的气息,想去旅游)

2、揭示课题:我们到一个陌生的地方旅游,首先要做什么呢?(找地图,了解城市情况)从地图上可以获取哪些信息(比例尺、图距、实距、方向……)师:比例尺的计算方法我们已经学过了,今天我们就来学习比例尺在生活中的运用(板书课题:比例尺的应用)二、自主探索

1、谈话:刚才同学们说了那么多想去的地方,老师想带你们到南京玩一玩,你想吗?(想) 2、出示下面地图,思考从图上你能获得哪些信息。

3、学生汇报:从图上可以看到想去的地方的方位,比例尺是多少,可以看出居住地及旅游的线路……

4、学习求实际距离的方法。假设我们到南京旅游,住在金陵饭店,想去南京博物馆参观,你能计算出从金陵饭店到南京博物馆的距离吗?试试看。(1)学生讨论计算方法,然后小组代表发言、集体交流。(要求实际距离可以根据比例尺的意义用解比例尺的方法做,也可以用其它公式做)(2)学生试做,并指名板演。(3)集体订正,(采用不同方法解答,说一说每一种方法思路及注意点)

5、学习求图上距离的方法(1)出示:已知南京博物馆长600米、宽300米,现在做成比例尺是1:10000的平面图,你能求出南京博物馆在图上的长和宽各是多少厘米吗?(2)学生讨论解决方法,然后小组代表发言,集体交流。(可以根据比例尺的意义用比例的方法解答,也可以用公式图上距离=实际距离×比例尺解答)(3)学生试做并板演。(4)集体订正,说一说,每种方法的思路及注意点。

6、学生看书37——38页,提出不懂的问题,集体解决。三、反馈提高

1、学校的操场长300米、宽100米,要把平面图给制在作业本上,你认为选用哪个比例尺比较合适?(1)1:1000 (2)1:

(3)1:5000 (4)1:10000 选第(3)个最合适,让学生说明原因

2、量一量下图中小明家到学校公园、商场的距离各是多少厘米,然后算一算小明家到学校、公园、商场的实际距离各是多少米?指名板演,并说一说列式的依据及解题思路。

3、根据条件绘制金山镇镇区平面图(1)金石路在繁荣路和开发路之间并与两条路平行,距繁荣路300米(在图上画出金石路)(2)金山小学在金中路东侧,在开发路北100米处,(标出金山小学位置)

四、小结:今天你学习了什么内容?有哪些收获?五、作业:测量出学校的实际长和宽,然后选用适当的比例尺一出学校平面图。

以上就是差异网为大家带来的10篇《比例的应用》,希望对您的写作有所帮助。

305 100298
网站地图