一元二次方程数学教学教案(8篇)-尊龙凯时最新z6com
作为一名教学工作者,总归要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?以下内容是差异网为您带来的8篇《一元二次方程数学教学教案》,希望朋友们参阅后能够文思泉涌。
九年级数学《一元二次方程》教案 篇一
教学目标
知识与技能目标
1、构建本章的部分知识框图。
2、复习一元二次方程的概念、解法。
过程与方法
1、通过对本章方程解法的复习,进一步提高学生的运算能力。
2、在解一元二次方程的过程中体会转化等数学思想。
情感、态度与价值观
通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.
教学重点
1、一元二次方程的概念
2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;
教学难点
解法的灵活选择;例4和例5的解法。
教学过程
一、创设情境
导入新课
问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)
二、师生互动
共同探究
1、复习概念
例1
例2
2、四种解法
(1)
解法及其关系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四种解法分别解此方程
(4)方法优选
3、方法补充
例4
4、解法纠错
例5
解关于x的方程
错误解法
正确解法
三、小结反思
提炼思想
我们有哪些收获?解方程的思想方法是什么?
四、布置作业
巩固提高
元二次方程教案 篇二
一、教材分析:
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;
(2)能根据具体问题的实际意义,检验结果是否合理;
(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:
1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
活动1复习回顾解决课前参与
活动2封面设计问题的探究
活动3草坪规划问题的延伸
活动4课堂回眸
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1复习回顾解决课前参与
由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。
活动2封面设计问题的探究
通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3草坪规划问题的延伸
放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4课堂回眸
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
《一元二次方程》全章教案 篇三
教学内容
一元二次方程概念及一元二次方程一般式及有关概念
教学目标
了解一元二次方程的概念;一般式ax2 bx c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情
重难点关键
1.重点:
一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:
通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念
教学过程
一、复习引入
学生活动:列方程
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________
整理、化简,得:__________
问题(2)如图,如果 ,那么点c叫做线段ab的黄金分割点
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______
整理,得:________
老师点评并分析如何建立一元二次方程的数学模型,并整理
二、探索新知
学生活动:请口答下面问题
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:
(1)都只含一个未知数x;
(2)它们的最高次数都是2次的;
(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2 bx c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2 bx c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2 bx c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x 4x2=18
移项,得:4x2-26x 22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x 1)2 (x-2)(x 2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x 1)2 (x-2)(x 2)=1化成ax2 bx c=0(a≠0)的形式.
解:去括号,得:
x2 2x 1 x2-4=1
移项,合并得:2x2 2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材p32 练习1、2
四、应用拓展
例3.求证:关于x的方程(2-8 17)x2 2x 1=0,不论取何值,该方程都是一元二次方程.
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8 17≠0即可.
证明:2-8 17=(-4)2 1
∵(-4)2≥0
∴(-4)2 1>0,即(-4)2 1≠0
∴不论取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2 bx c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
元二次方程教案 篇四
一、教学目标
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
二、教学重难点
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
难点:找对题目中的数量关系从而列出一元二次方程。
三、教学过程
(一)导入新课
师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?
生:老师,这是雷锋叔叔。
师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?
生:是的老师。
师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。
(二)新课教学
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用ac来表示上部,bc来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)
(三)小结作业
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
元二次方程教案 篇五
一、教学目标
【知识与技能】
理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。
【过程与方法】
经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。
【情感、态度与价值观】
通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。
二、教学重难点
【教学重点】
用公式法解一元二次方程。
【教学难点】
一元二次方程求根公式的推导。
三、教学过程
(一)引入新课
复习回顾:用配方法解一元二次方程。
配方,得
(四)小结作业
小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。如何判断一个方程是否有实数根?
作业:课后练习题,试着用多种方法解答。
四、板书设计
略
元二次方程教案 篇六
教学
目标
知识与能力:1.理解一元二次方程根的判别式。
2.掌握一元二次方程的根与系数的关系
3.同学们掌握一元二次方程的实际应用。了解一元二次方程的分式方程。
过程与方法:培养学生的逻辑思维能力以及推理论证能力。
情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。
重、难点
重点:根的判别式和根与系数的关系及一元二次方程的应用。
难点:一元二次方程的实际应用。
一、导入新课、揭示目标
1.理解一元二次方程根的判别式。
2.掌握一元二次方程的根与系数的关系
3.掌握一元二次方程的实际应用。
二、自学提纲:
一。主要让学生能理解一元二次方程根的判别式:
1.判别式在什么情况下有两个不同的实数根?
2.判别式在什么情况下有两个相同的实数根?
3.判别式在什么情况下无实数根?
二。ax2 bx c=o(a≠0)的两个根为x1.x2那么
x1 x2=-x1x2=
三。一元二次方程的实际应用。根据不同的类型的问题。列出不同类型的方程。
三。合作探究。解决疑难
例1已知关于x的方程x2 2x=k-1没有实数根。试判别关于x的方程x2 kx=1-k的根的情况。
巩固提高:
已知在等腰中,bc=8.ab.ac的长是关于x的方程x2-10x m=0的两个实数根。求的周长
例题2:
.已知:x1.x2是关于x的方程x2 (2a-1)x a2=0的两个实数根。且(x1 2)(x2 2)=11.求a的值。
.巩固提高:
已知关于x的一元二次方程x2 (4m 1)x 2m-1=0.
(1)求证:不论m为任何实数。方程总有两个不相等的实数根;
(2)若方程两根为x1.x2.且满足
求m的值。。
例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台。现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元。已知电脑价格每台下降100元,月销售量将上升10台,
(1)求1月份到3月份销售额的平均增长率:
(2)求3月份时该电脑的销售价格。
练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?
则降价多少元?
四、小结这节课同学有什么收获?同学互相交流?
五、布置作业:课前课后p10-12
元二次方程教案 篇七
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1 两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一) 设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二) 设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。第 1 2 页
《一元二次方程》全章教案 篇八
学习目标
1、一元二次方程的求根公式的推导
2、会用求根公式解一元二次方程
3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯
学习重、难点
重点:
一元二次方程的求根公式
难点:
求根公式的条件:b2 -4ac≥0
学习过程:
一、自学质疑:
1、用配方法解方程:2x2-7x 3=0
2、用配方解一元二次方程的步骤是什么?
3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?
二、交流展示:
刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2 bx c=0(a≠0)呢?
三、互动探究:
一般地,对于一元二次方程ax2 bx c=0
(a≠0),当b2-4ac≥0时,它的根是
用求根公式解一元二次方程的方法称为公式法
由此我们可以看到:一元二次方程ax2 bx c=0(a≠0)的根是由方程的系数a、b、c确定的。因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根。
注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号。
(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解。就不必再代入公式计算了。
四、精讲点拨:
例1、课本例题
总结:其一般步骤是:
(1)把方程化为一般形式,进而确定a、b,c的值(注意符号)
(2)求出b2-4ac的值。(先判别方程是否有根)
(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后写出方程的根。
例2、解方程:
(1)2x2-7x 3=0 (2) x2-7x-1=0
(3) 2x2-9x 8=0 (4) 9x2 6x 1=0
五、纠正反馈:
做书上第p90练习。
六、迁移应用:
例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。
例4、求方程 的两根之和以及两根之积
以上就是差异网为大家整理的8篇《一元二次方程数学教学教案》,能够给予您一定的参考与启发,是差异网的价值所在。