高一数学必修一优秀教案优秀7篇-尊龙凯时最新z6com
作为一名辛苦耕耘的教育工作者,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?这里给大家分享一些关于高一数学必修一优秀教案,方便大家学习。读书破万卷下笔如有神,以下内容是差异网为您带来的7篇《高一数学必修一优秀教案》,希望可以启发、帮助到大朋友、小朋友们。
高一数学的教案 篇一
【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!
本文题目:空间几何体的三视图和直观图高一数学教案
第一课时1.2.1中心投影与平行投影 1.2.2空间几何体的三视图
教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体。
教学重点:画出三视图、识别三视图。
教学难点:识别三视图所表示的空间几何体。
教学过程:
一、新课导入:
1、 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2、 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上。
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;
直观图:观察者站在某一点观察几何体,画出的空间几何体的图形。
用途:工程建设、机械制造、日常生活。
二、讲授新课:
1、 教学中心投影与平行投影:
① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。
② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形。
③ 平行投影:在一束平行光线照射下形成的投影。 分正投影、斜投影。
讨论:点、线、三角形在平行投影后的结果。
2、 教学柱、锥、台、球的三视图:
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图
讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高
结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果。 正视图、侧视图、俯视图。
③ 试画出:棱柱、棱锥、棱台、圆台的三视图。 (
④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状。
(试变化以上的三视图,说出相应几何体的摆放)
3、 教学简单组合体的三视图:
① 画出教材p16 图(2)、(3)、(4)的三视图。
② 从教材p16思考中三视图,说出几何体。
4、 练习:
① 画出正四棱锥的三视图。
画出右图所示几何体的三视图。
③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状。
5、 小结:投影法;三视图;顺与逆
三、巩固练习:练习:教材p17 1、2、3、4
第二课时 1.2.3 空间几何体的直观图
教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图。
教学重点:画出直观图。
高一数学的教案 篇二
本文题目:高一数学教案:函数的奇偶性
课题:1.3.2函数的奇偶性
一、三维目标:
知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操。 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:
重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:
学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:
1、复习在初中学习的轴对称图形和中心对称图形的定义:
2、分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。
五、学习过程:
函数的奇偶性:
(1)对于函数 ,其定义域关于原点对称:
如果______________________________________,那么函数 为奇函数;
如果______________________________________,那么函数 为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。
六、达标训练:
a1、判断下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x (4)f(x)=
a2、二次函数 ( )是偶函数,则b=___________ 。
b3、已知 ,其中 为常数,若 ,则
_______ 。
b4、若函数 是定义在r上的奇函数,则函数 的图象关于 ( )
(a) 轴对称 (b) 轴对称 (c)原点对称 (d)以上均不对
b5、如果定义在区间 上的函数 为奇函数,则 =_____ 。
c6、若函数 是定义在r上的奇函数,且当 时, ,那么当
时, =_______ 。
d7、设 是 上的奇函数, ,当 时, ,则 等于 ( )
(a)0.5 (b) (c)1.5 (d)
d8、定义在 上的奇函数 ,则常数 ____ , _____ 。
七、学习小结:
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。
八、课后反思:
高中数学教案高 篇三
一、教学目标:
1、知识与技能:理解并掌握等比数列的性质并且能够初步应用。
2、过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、
概括等逻辑思维能力。
3、情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。
二、重点:等比数列的性质及其应用。
难点:等比数列的性质应用。
三、教学过程。
同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。
数列名称 等差数列 等比数列
定义 一个数列,若从第二项起 每一项减去前一项之差都是同一个常数,则这个数列是等差数列。 一个数列,若从第二项起 每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。
定义表达式 an-an-1=d (n≥2)
(q≠0)
通项公式证明过程及方法
an-an-1=d; an-1-an-2=d,
…a2-a1=d
an-an-1 an-1-an-2 … a2-a1=(n-1)d
an=a1 (n-1)__d
累加法 ; ……。
an=a1q n-1
累乘法
通项公式 an=a1 (n-1)__d an=a1q n-1
多媒体投影(总结规律)
数列名称 等差数列 等比数列
定 义 等比数列用“比”代替了等差数列中的“差”
定 义
表
达 式 an-an-1=d (n≥2)
通项公式证明
迭加法 迭乘法
通 项 公 式
加-乘
乘—乘方
通过观察,同学们发现:
�6�1 等差数列中的 减法、加法、乘法,
等比数列中升级为 除法、乘法、乘方。
四、探究活动。
探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。
练习1 在等差数列{an}中,a2= -2,d=2,求a4=_____.。(用一个公式计算) 解:a4= a2 (n-2)d=-2 (4-2)__2=2
等差数列的性质1: 在等差数列{an}中, a n=am (n-m)d.
猜想等比数列的性质1 若{an}是公比为q的等比数列,则an=am__qn-m
性质证明 右边= am__qn-m= a1qm-1qn-m= a1qn-1=an=左边
应用 在等比数列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2__22=-8
探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。
练习2 在等差数列{an}中,a3 a4 a5 a6 a7=450,则a2 a8的值为 。 解:a3 a4 a5 a6 a7=(a3 a7) (a4 a6) a5= 2a5 2a5 a5=5 a5=450 a5=90 a2 a8=2×90=180
等差数列的性质2: 在等差数列{an}中, 若m n=p q,则am an=ap aq 特别的,当m=n时,2 an=ap aq
猜想等比数列的性质2 在等比数列{an} 中,若m n=s t则am__an=as__at 特别的,当m=n时,an2=ap__aq
性质证明 右边=am__an= a1qm-1 a1qn-1= a12qm n-1= a12qs t-1=a1qs-1 a1qt-1= as__at=左边 证明的方向:一般来说,由繁到简
应用 在等比数列{an}若an>0,a2a4 2a3a5 a4a6=36,则a3 a5=_____. 解:a2a4 2a3a5 a4a6= a32 2a3a5 a52=(a3 a5)2=36
由于an>0,a3 a5>0,a3 a5=6
探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。
高一数学集合教案 篇四
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
教学重点:
集合的交集与并集、补集的概念;
教学难点:
集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
【知识点】
1、并集
一般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集(union)
记作:a∪b读作:“a并b”
即:a∪b={x|x∈a,或x∈b}
venn图表示:
第4 / 7页
a与b的所有元素来表示。 a与b的交集。
2、交集
一般地,由属于集合a且属于集合b的元素所组成的集合,叫做集合a与b的交集(intersection)。
记作:a∩b读作:“a交b”
即:a∩b={x|∈a,且x∈b}
交集的venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合a与b的公共元素组成的集合。
拓展:求下列各图中集合a与b的并集与交集
a
说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集
3、补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(universe),通常记作u。
补集:对于全集u的一个子集a,由全集u中所有不属于集合a的所有元素组成的集合称为集合a相对于全集u的补集(complementary set),简称为集合a的补集,
记作:cua
即:cua={x|x∈u且x∈a}
第5 / 7页
补集的venn图表示
说明:补集的概念必须要有全集的限制
4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分
交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
5、集合基本运算的一些结论:
a∩b?a,a∩b?b,a∩a=a,a∩?=?,a∩b=b∩a
a?a∪b,b?a∪b,a∪a=a,a∪?=a,a∪b=b∪a
(cua)∪a=u,(cua)∩a=?
若a∩b=a,则a?b,反之也成立
若a∪b=b,则a?b,反之也成立
若x∈(a∩b),则x∈a且x∈b
若x∈(a∪b),则x∈a,或x∈b
¤例题精讲:
【例1】设集合u?r,a?{x|?1?x?5},b?{x|3?x?9},求a?b,?u(a?b)。解:在数轴上表示出集合a、b。
【例2】设a?{x?z||x|?6},b??1,2,3?,c??3,4,5,6?,求:
(1)a?(b?c);(2)a??a(b?c)。
【例3】已知集合a?{x|?2?x?4},b?{x|x?m},且a?b?a,求实数m的取值范围。
xx且x?n}【例4】已知全集u?{x|x?10,,a?{2,4,5,8},b?{1,3,5,8},求
cu(a?b),cu(a?b),(cua)?(cub),(cua)?(cub),并比较它们的关系。
高一数学优秀教案 篇五
教学准备
教学目标
知识目标等差数列定义等差数列通项公式
能力目标掌握等差数列定义等差数列通项公式
情感目标培养学生的观察、推理、归纳能力
教学重难点
教学重点等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用
教学过程
由__《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察----发现?
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2-a1=d
a3-a2=d
a4-a3=d
……
an-an-1=d
即可得:
an=a1 (n-1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
∴an=a1 (n-1)d
=3 (n-1)×2
=2n 1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=-2,先求出通项公式an,再求出a20
解:∵a1=10,d=8-10=-2,n=20
由an=a1 (n-1)d得
∴a20=a1 (n-1)d
=10 (20-1)×(-2)
=-28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1 (n-1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
解:由题意可得
a1 5d=12
a1 17d=36
∴d=2a1=2
∴an=2 (n-1)×2=2n
练习
1、判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④-1,-8,-15,-22,-29;
答案:①不是②是①不是②是
等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a等于()
a.1b.-1c.-1/3d.5/11
提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)
3、在数列{an}中a1=1,an=an 1 4,则a10=。
提示:d=an 1-an=-4
教师继续提出问题
已知数列{an}前n项和为……
作业
高一数学集合教案 篇六
1.1.2集合的表示方法
一、教学目标:
1、集合的两种表示方法(列举法和特征性质描述法)。
2、能选择适当的方法正确的表示一个集合。
重点:集合的表示方法。
难点:集合的特征性质的概念,以及运用特征性质描述法表示集合。
二、复习回顾:
1、集合中元素的特性:______________________________________.
2、常见的数集的简写符号:自然数集 整数集 正整数集
有理数集 实数集
三、知识预习:
1. ___________________________________________________________________________ ____________________________________________________________________叫做列举法;
2. _______________________ ____________________________________________________叫做集合a的一个特征性质。 ___________________________________________________________________________________
叫做特征性质描述法,简称描述法。
说明:概念的理解和注意问题
1. 用列举法表示集合时应注意以下5点:
(1) 元素间用分隔号,
(2) 元素不重复;
(3) 不考虑元素顺序;
(4) 对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后方能用省略号。
(5) 无限集有时也可用列举法表示。
2. 用特征性质描述法表示集合时应注意以下6点;
(1) 写清楚该集合中元素的代号(字母或用字母表达的元素符号);
(2) 说明该集合中元素的性质;
(3) 不能出现未被说明的字母;
(4) 多层描述时,应当准确使用且和或
(5) 所有描述的内容都要写在集合符号内;
(6) 用于描述的'语句力求简明,准确。
四、典例分析
题型一 用列举法表示下列集合
例1 用列举法表示下列集合
(1)a={x n|0
变式训练:○1课本7页练习a第1题。 ○2课本9页习题a第3题。
题型二 用描述法表示集合
例2 用描述法表示下列集合
(1){-1,1} (2)大于3的全体偶数构成的集合 (3)在平面 内,线段ab的垂直平分线
变式训练:课本8页练习a第2题、练习b第2题、9页习题a第4题。
题型三 集合表示方法的灵活运用
例3 分别判断下列各组集合是否为同一个集合:
(1)a={x|x 32} b={y|y 32}
(2) a={(1,2)} b={1,2}
(3) m={(x,y)|y= 1} n={y| y= 1}
变式训练:1、集合a={x|y= ,x z,y z},则集合a的元素个数为( )
a 4 b 5 c 10 d 12
2、课本8页练习b第1题、习题a第1题
例4 已知集合a={x|k -8x 16=0}只有一个元素,试求实数k的值,并用列举法表示集合a.
作业:课本第9页a组第2题、b组第1、2题。
限时训练
1. 选择
(1)集合 的另一种表示法是( b )
a. b. c. d.
(2) 由大于-3小于11的偶数所组成的集合是( d )
a. b.
c. d.
(3) 方程组 的解集是( d )
a. (5, 4) b. c. (-5, 4) d. (5,-4)
(4)集合m= (x,y)| xy0, x , y 是( d )
a. 第一象限内的点集 b. 第三象限内的点集
c. 第四象限内的点集 d. 第二、四象限内的点集
(5)设a, b , 集合 1,a b, a = 0, , b , 则b-a等于( c )
a. 1 b. -1 c. 2 d. -2
2. 填空
(1)已知集合a= 2, 4, x2-x , 若6 ,则x=___-2或3______.
(2)由平面直角坐标系内第二象限的点组成的集合为__ __.
(3)下面几种表示法:○1 ;○2 ; ○3 ;
○4(-1,2);○5 ;○6 . 能正确表示方程组
的解集的是__○2__○5_______.
(4) 用列举法表示下列集合:
a= =___{0,1,2}________________________;
b= =___{-2,-1,0,1,2}________________________;
c= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.
(5) 已知a= , b= , 则集合b=__{0,1,2}________.
3. 已知集合a= , 且-3 ,求实数a. (a= )
4. 已知集合a= .
(1) 若a中只有一个元素,求a的值;(a=0或a=1)
(2)若a中至少有一个元素,求a的取值范围;(a1)
(3)若a中至多有一个元素,求a的取值范围。(a=0或a1)
高一数学的教案 篇七
学习目标:
(1)理解函数的概念
(2)会用集合与对应语言来刻画函数,
(3)了解构成函数的要素。
重点:
函数概念的理解
难点:
函数符号y=f(x)的理解
知识梳理:
自学课本p29—p31,填充以下空格。
1、设集合a是一个非空的实数集,对于a内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合a上的一个函数,记作 。
2、对函数 ,其中x叫做 ,x的取值范围(数集a)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。
3、因为函数的值域被 完全确定,所以确定一个函数只需要
。
4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:
① ;② 。
5、设a, b是两个实数,且a
(1)满足不等式 的实数x的集合叫做闭区间,记作 。
(2)满足不等式a
(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;
分别满足x≥a,x>a,x≤a,x
其中实数a, b表示区间的两端点。
完成课本p33,练习a 1、2;练习b 1、2、3。
例题解析
题型一:函数的概念
例1:下图中可表示函数y=f(x)的图像的只可能是( )
练习:设m={x| },n={y| },给出下列四个图像,其中能表示从集合m到集合n的函数关系的有____个。
题型二:相同函数的判断问题
例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与
④ 与 其中表示同一函数的是( )
a. ② ③ b. ② ④ c. ① ④ d. ④
练习:已知下列四组函数,表示同一函数的是( )
a. 和 b. 和
c. 和 d. 和
题型三:函数的定义域和值域问题
例3:求函数f(x)= 的定义域
练习:课本p33练习a组 4.
例4:求函数 , ,在0,1,2处的函数值和值域。
当堂检测
1、下列各组函数中,表示同一个函数的是( a )
a、 b、
c、 d、
2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( c )
a、5 b、-5 c、6 d、-6
3、给出下列四个命题:
① 函数就是两个数集之间的对应关系;
② 若函数的定义域只含有一个元素,则值域也只含有一个元素;
③ 因为 的函数值不随 的变化而变化,所以 不是函数;
④ 定义域和对应关系确定后,函数的值域也就确定了。
其中正确的有( b )
a. 1 个 b. 2 个 c. 3个 d. 4 个
4、下列函数完全相同的是 ( d )
a. , b. ,
c. , d. ,
5、在下列四个图形中,不能表示函数的图象的是 ( b )
6、设 ,则 等于 ( d )
a. b. c. 1 d.0
7、已知函数 ,求 的值。( )
读书破万卷下笔如有神,以上就是差异网为大家整理的7篇《高一数学必修一优秀教案》,希望对您的写作有所帮助。