高中数学优秀说课稿【最新10篇】-尊龙凯时最新z6com
作为一名专为他人授业解惑的人民教师,通常需要用到说课稿来辅助教学,说课稿可以帮助我们提高教学效果。怎么样才能写出优秀的说课稿呢?差异网为您带来了10篇《高中数学优秀说课稿》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
高中数学说课稿(精选10 篇一
一、教材分析
本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。
根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和进取性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的资料,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。
二、教法
根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,进取探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点
三、学法:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。
四、教学过程
第一:创设情景,大概用2分钟
第二:实践探究,构成概念,大约用25分钟
第三:应用概念,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不明白ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生经过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的资料,讨论能够解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形。
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2.在△abc中,已知a=20cm,b=28cm,a=40°,解三角形。
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。
(六)课堂练习,提高巩固
1、在△abc中,已知下列条件,解三角形。
(1)a=45°,c=30°,c=10cm
(2)a=60°,b=45°,c=20cm
2、在△abc中,已知下列条件,解三角形。
(1)a=20cm,b=11cm,b=30°
(2)c=54cm,b=39cm,c=115°
学生板演,教师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定理,体现了数形结合的数学思想。
2.它表述了三角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生进取性,使数学教学成为数学活动的教学。)
(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一节资料,余弦定理。布置作业,预习下一节资料。
高中数学说课稿 篇二
各位老师:
今天我说课的题目是《输入、输出语句和赋值语句》,内容选自于新课程人教a版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
我们用自然语言或程序框图描述的算法,但是计算机是无法“看得懂,听得见”的。因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序。程序设计语言有很多种。为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句、条件语句和循环语句。。而我们今天所要学习的是前三种算法语句,它们基本上是对应于算法中的顺序结构的。
2.教学的重点和难点
重点:正确理解输入语句、输出语句、赋值语句的作用。
难点:准确写出输入语句、输出语句、赋值语句。
二、教学目标分析
1.知识与技能目标:
(1)正确理解输入语句、输出语句、赋值语句的结构。
(2)会写一些简单的程序。
(3)掌握赋值语句中的“=”的作用。
2.过程与方法目标:
(1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。
(2)通过模仿,操作,探索的过程,体会算法的基本思想和基本语句的用途,提高学生应用数学软件的能力。
3.情感,态度和价值观目标
(1) 通过对三种语句的了解和实现,发展有条理的思考,表达的能力,提高逻辑思维能力。
(2) 学习算法语句,帮助学生利用计算机软件实现算法,活跃思维,提高学生的数学素养。
(3) 结合计算机软件的应用, 增强应用数学的意识,在计算机上实现算法让学生体会成功喜悦。
三、教学方法与手段分析
1.教学方法:引导与合作交流相结合,学生在体会三种语句结构格式的过程中,让学生积极参与,讨论交流,充分挖掘三种算法语句的格式特点及意义,在分析具体问题的过程中总结三种算法语句的思想与特征。
2.教学手段:运用计算机、图形计算器辅助教学
四、教学过程分析
1. 创设情境(约5分钟)
在课的开始,我要求学生们举出一些在日常生活中所应用到的有关计算机的例子,如:听mp3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,并告诉他们在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,然后接着问他们知不知道计算机到底是怎样工作的?通过这个问题引出我们今天所要学习的内容。(板出课题)
在这个过程中,我让学生们将课本学习的内容与现实生活联系在了一起,这样能够激起他们对接下来的所要学习内容的兴趣,为整节课的学习打下一个良好的基础。
2.探究新知(约15分钟)
这里我先给出一个题目:用描点法作出函数
的图象,用描点法作函数的图象时,需要先求出自变量与函数的对应值。编写程序,分别计算当
时的函数值。(程序由我在课前准备好,教学中直接调用运行)
程序:input“x=”;x 输入语句
y=x^3+3*x^2-24*x+30 赋值语句
print x 输出语句
print y 输出语句
end
(学生们先看,再跟着做,先不必深究该程序如何得来,只要模仿编写程序,通过运行自己编写的程序发现问题所在,进一步提高学生的模仿能力)
之后,我向学生们提问:在这个程序中,他们觉得哪些是输入语句、输出语句和赋值语句?(同学们互相交流、议论、猜想、概括出结论。提示:“input”和“print”的中文意思,还要请学生们注意到在赋值语句中的赋值号“=”与数学中的等号意义不同。)
此过程由老师引导,学生们自己讨论并总结出什么是输入语句、输出语句和赋值语句,这样比老师直接地将知识传授给他们,学习的效果更佳,同时也锻炼了学生们思考问题的能力和概括能力,激发学习兴趣。
然后给出一个思考题:在1.1.2中程序框图中的输入框,输出框的内容怎样用输入语句、输出语句来表达?(学生讨论、交流想法,然后请学生作答)这样可以及时应用刚刚学习的内容,并可以将前后所学知识联系起来。
3.例题精析(约12分钟)
在本环节中我为学生们准备了三道例题,这三道例题均选自课本的例2、例3和例4,学生通过这几道例题的讲解,结合计算机程序上机运用,可以掌握在程序设计语言中的前三种算法语句,体会到他们在程序中的意义和作用。
4.课堂精练(约4分钟)
p15 练习 1.
提问:如果要求输入一个摄氏温度,输出其相应的华氏温度,又该如何设计程序?(学生课后思考,讨论完成)通过提问启发学生们思考,发散思维。
5.课堂小结(约5分钟)
⑴输入语句、输出语句和赋值语句的结构特点及联系
⑵应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题
⑶ 赋值语句中“=”的作用及应用
⑷编程一般的步骤:先写出算法,再进行编程。
6.布置作业
p23 习题1.2 a组 1(2)、2
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
7.板书设计
高中数学说课稿 篇三
各位评委老师你们好,我是第xx号选手。我今天说课的题目是《 》,我将从教材分析,教法,学法,教学程序,等几个方面进行我的说课。
一、教材分析
这部分我主要从3各方面阐述
1、 教材的地位和作用
《 》是北师大版必修?第?章第?节的内容,在此之前,同学们已经学习了、,这些对本节课的学习有一定的铺垫作用,同是学好本节的内容不仅加深前面所学习的知识,而且为后面我们将要学习的?知识打好基础,所以说本节课的学习在整个高中数学学习过程中占有重要地位!
2、根据教学大纲的规定,教学内容的要求,教学对象的实情我确定了如下3维教学目标
i知识目标:
ii能力目标:初步培养学生归纳,抽象,概括的思维能力。训练学生认识问题,分析问题,解决问题的能力
iii情感目标:通过学生的探索,史学生体会数学就在我们身边,让学生发现生活的数学,培养不断超越的创新品质,提高数学素养。
3、 结合以上分析以及高一学生的人知水平我确定啦本节课的重难点
教学重点:
教学难点;
二、教法
教学方法是完成教学任务的手段,恰当的学者教学方法至关重要,根据本节课的教学内容,考虑到高一学生已经初步具有一定的探索能力,并喜欢挑战问题的实际情况,为啦更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的知道思想。我主要采用 问题探究法 引导发现发,案例教学法,讲授法,在教学过程中精心设计带有启发性和思考性的问题,满足学生探索的欲望,培养学生的学习兴趣,激发来自学生主体最有利的动力。并运用多媒体课件的形式,更形象直观,提高教学效果的同时加大啦课堂密度!
三、学法:
根据学生的年龄特征,运用讯息渐进,逐步升入,理论联系实际的规律,让学生从问题中质疑,尝试,归纳,总结,运用。培养学生发现问题,研究问题,分析问题的能力。自主参与知识的发生,发展,形成过程,完成从感性认识 到理性思维的质的飞跃,史学生在知识和能力方面都有所提高。
四、教学程序
1、 创设情境,提出问题
让学生产生强烈的问题意识,学生试着利用以前的知识经验,同化索引出当前学习的新知识,激发学习的兴趣和动机。
2、 引导探究,直奔主题。(揭示概念)
参用小组合作的方式,各小组派代表发表成果,教师作为教学的引导者,给予肯定的评价,并给出一定的指导,最后师生共同得出??!教师引导学生进一步学习。整个过程充分突出学生的主体地位,培养学生合作探究的能力,激发兴趣,更让学生在思考学术问题以及解决数学问题的思想方法上有更深的交流。
3、 自我尝试,初步应用
在讲解是,不仅在于怎样接,更在于为什么这样解,及时引导学生探究运用知识,解决问题的方法,及时对解题方法和规律进行概括,有利于培养学生的思维能力。
4、当堂训练,巩固深化(反馈矫正)
通过学生的主体参与,让学生巩固所学的知识,实现对知识再认识的以及在数学解题思想方法层面上进一步升华
5、归纳小结,回顾反思
从知识,方法,经验等方面进行总结。让学生思考本节课学到啦那些知识,还有那些疑问。本节课最大的体验。本节课你学会那些技能。
知识性的内容小结,可以把课堂教学传授的知识尽快转化为学生的素养,数学思想发放的小结,可以使学生更深刻地理解数学思想发放在解题中的地位和作用,并且逐步培养学生良好的个性品质目标。
6、变式延伸,布置作业
必做题,对本届课学生知识水平的反馈。选作题,对本节课知识内容的延伸。使不同层次学生都可以收获成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,让每个学生在原有的基础上有所发展。做到人人学数学,人人学不同的数学。
7、板书设计
力图简洁,形象,直观,概括以便学生易于掌握。
五、教学评价
学生学习结果评价当然重要,但是学习过程的评价更加重要。本节课中高度重视学生学习过程中的参与度,自信心,团队精神,合作意识,独立思考习惯的养成。数学发现的能力,以及学习的兴趣和成就感,学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多学生主动参与,师生对话可以实现师生合作,适度的研讨可以驻京生生交流,知识的生成和问题的解决可以让学生感受到成功的喜悦。缜密的思考可以培养学生独立思考的习惯,让学生在教室评价,学生评价以及自我评价的过程中体验知识的积累,探索能力的长进和思维品质的提高,为学生的可持续发展打下基础。
以上就是我的说课内容。不当之处,希望各位老师给予指正。谢谢各位评委老师!你们幸苦啦!
高中数学说课稿 篇四
一、说教材
1、从在教材中的地位与作用来看
《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
2、从学生认知角度看
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
3、学情分析
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。
4、重点、难点
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法和公式的灵活运用。
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
二、说目标
知识与技能目标:
理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。
过程与方法目标:
通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。
情感与态度价值观:
通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。
三、说过程
学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:
1、创设情境,提出问题
在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。
此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。
设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。
2、师生互动,探究问题
在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?
探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)
探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?
设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。
经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?
设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。
3、类比联想,解决问题
这时我再顺势引导学生将结论一般化,
这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。
设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。
对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)
再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)
设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。
4、讨论交流,延伸拓展
高中数学说课稿 篇五
各位老师,大家好!我叫周婷婷,来自湖南科技大学。我说课的题目是《算法的概念》,内容选自于新课程人教a版必修3第一章第一节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
现代社会是一个信息技术发展很快的社会,算法进入高中数学正是反映了时代的需要,它是当今社会必备的基础知识,算法的学习是使用计算机处理问题前的一个必要的步骤,它可以让学生们知道如何利用现代技术解决问题。又由于算法的具体实现上可以和信息技术相结合。因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力。
2、教学的重点和难点
重点:初步理解算法的定义,体会算法思想,能够用自然语言描述算法难点:把自然语言转化为算法语言。
二、教学目标分析
1、知识目标:了解算法的含义,体会算法的思想;能够用自然语言描述解决具体问题的算法;理解正确的算法应满足的要求。
2、能力目标:让学生感悟人们认识事物的一般规律:由具体到抽象,再有抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力。
3、情感目标:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力。
三、教学方法分析
采用"问题探究式"教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。
四、学情分析
算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。
五、教学过程分析
1、创设情景:我首先向学生们展示章头图,介绍图中的后景是取自宋朝数学家朱世杰的数学作品《四元玉鉴》,告诉学生们章头图正是体现了中国古代数学与现代计算机科学的联系,它们的基础都是"算法"。
「设计意图」是为了充分挖掘章头图的教学价值,体现:
1)算法概念的由来;
2)我们将要学习的算法与计算机有关;
3)展示中国古代数学的成就;
4)激发学生学习算法的兴趣。从而顺其自然的过渡到本节课要讨论的话题。(约4分钟)
2、引入新课:在这一环节我首先和学生们一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础。紧接着在此基础上进一步复习回顾解一般的二元一次方程组的步骤,引导学生分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解。目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,为建立算法的概念做好铺垫。
之后,我就向学生们提出问题:到底什么是算法?如何用语言来表达算法的涵义?这里让学生们根据刚刚的探索交流、思考并回答,然后老师进行归纳,得出算法的基本概念,并帮助学生认识算法的概念,指出有穷性,确定性,可行性。这样可以让学生们真正参与到算法概念的形成过程中来,体会算法思想。(约8分钟)
3、例题讲解:在这一环节我安排了两道例题,以帮助学生们能更好地理解算法的基本概念,并应用到实际解决问题中去,而不只是单纯的对数学思想的领悟。
这两道例题均选自课本的例1和例2。
例1是让我们设定一个程序以判断一个数是否为质数。质数是我们之前已经学习的内容,为了能更顺利地完成解题过程,这里有必要引导学生们回顾一下质数应满足的条件,然后再根据这个来探索解题步骤。通过例1让学生认识到求解结构中存在"重复"。为导出一般问题的算法创造条件,也为学习算法的自然语言表示提供前提。告诉学生们本算法就是用自然语言的形式描述的。并且设计算法一定要做到以下要求:
(1)写出的算法必须能解决一类问题,并且能够重复使用。
(2)要使算法尽量简单、步骤尽量少。
(3)要保证算法正确,且计算机能够执行。
在例1的基础上我们继续研究例2,例2是要求我们设计一个利用二分法来求解方程的近似根的程序。我们首先要对算法作分析,回顾用二分法求解方程近似根的过程,然后设计出解题步骤。二分法是算法中的经典问题,具有明显的顺序和可操作的特点。因此通过例2可以让学生进一步了解算法的逻辑结构,领会算法的思想,体会算法的的特征。同时也可以巩固用自然语言描述算法,提高用自然语言描述算法的表达水平。另外,借助例题加强学生对算法概念的理解,体会算法具有程序性、有限性、构造性、精确性、指向性的特点,算法以问题为载体,泛泛而谈没有意义。(约20分钟)
4、课堂小结:
(1)算法的概念和算法的基本特征
(2)算法的描述方法,算法可以用自然语言描述。
(3)能利用算法的思想和方法解决实际问题,并能写出一此简单问题的算法课堂小结是一堂课内容的概括和总结,有利于学生把握本节课的重点,对所学知识有一个系统整体的认识。(约6分钟)
5、布置作业:课本练习1、2题
课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。
高中数学说课稿 篇六
说课内容:普通高中课程标准实验教科书(人教a版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。
一、 背景分析
1、学习任务分析
平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
2、学生情况分析
学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。
二、 教学目标设计
《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:
(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。
(2)体会平面向量的数量积与向量投影的关系。
(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。
综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:
1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,
并能运用性质和运算律进行相关的运算和判断;
3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、课堂结构设计
本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。
四、 教学媒体设计
和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:
1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。
2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。
平面向量数量积的物理背景及其含义
一、 数量积的概念 二、数量积的性质 四、应用与提高
1、 概念: 例1:
2、 概念强调 (1)记法 例2:
(2)“规定” 三、数量积的运算律 例3:
3、几何意义:
4、物理意义:
五、 教学过程设计
课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:
活动一:创设问题情景,激发学习兴趣
正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:
问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?
问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
问题3:如图所示,一物体在力f的作用下产生位移s,
(1)力f所做的功w= 。
(2)请同学们分析这个公式的特点:
w(功)是 量,
f(力)是 量,
s(位移)是 量,
α是 。
问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。
问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。
问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。
活动二:探究数量积的概念
1、概念的抽象
在分析“功”的计算公式的基础上提出问题4
问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。
2、概念的明晰
已知两个非零向量
与
,它们的夹角为
,我们把数量 ︱
︱·︱
︱cos
叫做
与
的数量积(或内积),记作:
·
,即:
·
= ︱
︱·︱
︱cos
在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5
问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:
角
的范围0°≤
<90°
=90°0°
≤180°
·
的符号
通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。
3、探究数量积的几何意义
这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。
如图,我们把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,记做:ob1=│
│cos
问题6:数量积的几何意义是什么?
这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。
4、研究数量积的物理意义
数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。
问题7:
(1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。
(2)尝试练习:一物体质量是10千克,分别做以下运动:
①、在水平面上位移为10米;
②、竖直下降10米;
③、竖直向上提升10米;
④、沿倾角为30度的斜面向上运动10米;
分别求重力做的功。
活动三:探究数量积的运算性质
1、性质的发现
教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:
(1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?
(2)比较︱
·
︱与︱
︱×︱
︱的大小,你有什么结论?
在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。
2、明晰数量积的性质
3、性质的证明
这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。
活动四:探究数量积的运算律
1、运算律的发现
关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9
问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。
学生可能会提出以下猜测: ①
·
=
·
②(
·
)
=
(
·
) ③(
)·
=
·
·
【www.chayi5.com】猜测①的正确性是显而易见的`。
关于猜测②的正确性,我提示学生思考下面的问题:
猜测②的左右两边的结果各是什么?它们一定相等吗?
学生通过讨论不难发现,猜测②是不正确的。
这时教师在肯定猜测③的基础上明晰数量积的运算律:
2、明晰数量积的运算律
3、证明运算律
学生独立证明运算律(2)
我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:
当λ<0时,向量
与λ
,
与λ
的方向 的关系如何?此时,向量λ
与
及
与λ
的夹角与向量
与
的夹角相等吗?
师生共同证明运算律(3)
运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。
在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。
活动五:应用与提高
例1、(师生共同完成)已知︱
︱=6,︱
︱=4,
与
的夹角为60°,求
(
2
)·(
-3
),并思考此运算过程类似于哪种运算?
例2、(学生独立完成)对任意向量
,b是否有以下结论:
(1)(
)2=
2 2
·
2
(2)(
)·(
-
)=
2—
2
例3、(师生共同完成)已知︱
︱=3,︱
︱=4, 且
与
不共线,k为何值时,向量
k
与
-k
互相垂直?并思考:通过本题你有什么收获?
本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。
为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:
1、 下列两个命题正确吗?为什么?
①、若
≠0,则对任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,则
=
。
2、已知△abc中,
=
,
=
,当
·
<0或
·
=0时,试判断△abc的形状。
安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,
通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。
活动六:小结提升与作业布置
1、本节课我们学习的主要内容是什么?
2、平面向量数量积的两个基本应用是什么?
3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?
4、类比向量的线性运算,我们还应该怎样研究数量积?
通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下
一节做好铺垫,继续激发学生的求知欲。
布置作业:
1、课本p121习题2.4a组1、2、3。
2、拓展与提高:
已知
与
都是非零向量,且
3
与7
-5
垂直,
-4
与 7
-2
垂直求
与
的夹角。
在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。
六、教学评价设计
评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定
性的评价。
2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
高中数学经典优秀说课稿 篇七
一、教材分析
1、教材内容
本节课是苏教版第二章《函数概念和基本初等函数ⅰ》函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。
2、教材所处地位、作用
函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。
3、教学目标
(1)知识与技能:
使学生理解函数单调性的概念,掌握判别函数单调性的方法;
(2)过程与方法:
从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度价值观:
让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。
4、重点与难点
教学重点
(1)函数单调性的概念;
(2)运用函数单调性的定义判断一些函数的单调性。
教学难点
(1)函数单调性的知识形成;
(2)利用函数图象、单调性的定义判断和证明函数的单调性。
二、教法分析与学法指导
本节课是一节较为抽象的数学概念课,因此,教法上要注意:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。
2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。
4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。
在学法上:
1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。
2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。
高中数学说课稿 篇八
一、教材分析:
1、教材所处的地位和作用:
本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识与能力:
(1)了解柱体、锥体、台体的表面积。
(2)能用公式求柱体、锥体、台体的表面积。
(3)培养学生空间想象能力和思维能力
过程与方法:
让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。
情感、态度与价值观:
通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。
3、重点,难点以及确定依据:
本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
教学重点:柱,锥,台的表面积公式的推导
教学难点:柱,锥,台展开图与空间几何体的转化
二、教法分析
1、教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。
2、教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
三。学情分析
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
四、教学过程分析
(1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性
(2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。
(3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。
(4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(5)例题及练习,见学案。
(6)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
(7)小结。让学生总结本节课的收获。老师适时总结归纳。
高中数学说课稿 篇九
一、教材结构与内容简析
1本节内容在全书及章节的地位:
《向量》出现在高中数学第一册(下)第五章第1节。本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。
2数学思想方法分析:
(1)从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。
(2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。
二、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
1基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。
2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。
3创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。
4个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。
三、教学重点、难点、关键
重点:向量概念的引入。
难点:“数”与“形”完美结合。
关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。
四、教材处理
建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。
五、教学模式
教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和全体学生积极参与下,进行集体认识的过程。教为主导,学为主体,又互为客体。启动学生自主性学习,启发引导学生实践数学思维的过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。
六、学习方法
1、让学生在认知过程中,着重掌握元认知过程。
2、使学生把独立思考与多向交流相结合。
七、教学程序及设想
(一)设置问题,创设情景。
1、提出问题:在日常生活中,我们不仅会遇到大小不等的量,还经常会接触到一些带有方向的量,这些量应该如何表示呢?
2、(在学生讨论基础上,教师引导)通过“力的图示”的回忆,分析大小、方向、作用点三者之间的关系,着重考虑力的作用点对运动的相对性与绝对性的影响。
设计意图:
1、把教材内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”、惊讶、困惑、感到棘手,紧张地沉思,期待寻找理由和论证的过程。
2、我们知道,学习总是与一定知识背景即情境相联系的。在实际情境下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识。这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情境中。
(二)提供实际背景材料,形成假说。
1、小船以0。5m/s的速度航行,已知一条河长xxxxm,宽150m,问小船需经过多长时间,到达对岸?
2、到达对岸?这句话的实质意义是什么?(学生讨论,期望回答:指代不明。)
3、由此实际问题如何抽象为数学问题呢?(学生交流讨论,期望回答:要确定某些量,有时除了知道其大小外,还需要了解其方向。)
设计意图:
1、教师范文吧在稍稍超前于学生智力发展的边界上(即思维的最邻近发展)通过问题引领,来促成学生“数形结合”思想的形成。
2。通过学生交流讨论,把实际问题抽象成为数学问题,并赋予抽象的数学符号和表达方式。
(三)引导探索,寻找尊龙凯时一人生就是博官网的解决方案。
1、如何补充上面的题目呢?从已学过知识可知,必须增加“方位”要求。
2。方位的实质是什么呢?即位移的本质是什么?期望回答:大小与方向的统一。
3、零向量、单位向量、平行向量、相等向量、共线向量等系列化概念之间的关系是什么?(明确要领。)
设计意图:
学生在教师引导下,在积累了已有探索经验的基础上,进行讨论交流,相互评价,共同完成了“数形结合”思想上的建构。
2、这一问题设计,试图让学生不“唯书”,敢于和善于质疑批判和超越书本和教师,这是创新素质的突出表现,让学生不满足于现状,执着地追求。
3、尽可能地揭示出认知思想方法的全貌,使学生从整体上把握解决问题的方法。
(四)总结结论,强化认识。
经过引导,学生归纳出“数形结合”的思想——“数”与“形”是一个问题的两个方面,“形”的外表里,蕴含着“数”的本质。
设计意图:促进学生数学思想方法的形成,引导学生确实掌握“数形结合”的思想方法。
(五)变式延伸,进行重构。
教师引导:在此我们已经知道,欲解决一些抽象的数学问题,可以借助于图形来解决,这就是向量的理论基础。
下面继续研究,与向量有关的一些概念,引导学生利用模型演示进行观察。
概念1:长度为0的向量叫做零向量。
概念2:长度等于一个单位长度的向量,叫做单位向量。
概念3:方向相同或相反的非零向量叫做平行(或共线)向量。(规定:零向量与任一向量平行。)
概念4:长度相等且方向相同的向量叫做相等向量。
设计意图:
1。学生在教师引导下,在积累了已有探索经验的基础上进行讨论交流,相互评价,共同完成了有向线段与向量两者关系的建构。
2。这些概念的比较可以让学生加强对“向量”概念的理解,以便更好地“数形结合”。
3。让学生对教学思想方法,及其应情境达到较为纯熟的认识,并将这种认识思维地贮存在大脑中,随时提取和应用。
(六)总结回授调整。
1。知识性内容:
例设o是正六边形abcdef的中心,分别写出图中与向量oa、ob、oc相等的向量。
2。对运用数学思想方法创新素质培养的小结:
a。要善于在实际生活中,发现问题,从而提炼出相应的数学问题。发现作为一种意识,可以解释为“探察问题的意识”;发现作为一种能力,可以解释为“找到新东西”的能力,这是培养创造力的基本途径。
b。问题的解决,采用了“数形结合”的数学思想,体现了数学思想方法是解决问题的根本途径。
c。问题的变式探究的过程,是一个创新思维活动过程中一种多维整合过程。重组知识的过程,是一种多维整合的过程,是一个高层次的知识综合过程,是对教材知识在更高水平上的概括和总结,有利于形成一个自我再生力强的开放的动态的知识系统,从而使得思维具有整体功能和创新能力。
2。设计意图:
1、知识性内容的总结,可以把课堂教学传授的知识,尽快转化为学生的素质。
2、运用数学方法创新素质的小结,能让学生更系统,更深刻地理解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。这是每堂课必不可少的一个重要环节。
(七)布置作业。
反馈“数形结合”的探究过程,整理知识体系,并完成习题5。1的内容。
高中数学说课稿 篇十
今天我将要为大家讲的课题是
首先,我对本节教材进行一些分析:
一、教材结构与内容简析
本节内容在全书及章节的地位:《 》是高中数学新教材第 册( )第 章第 节。在此之前,学生已学习了,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:
二、 教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
1 基础知识目标:
2 能力训练目标:
3 创新素质目标:
4 个性品质目标:
三、 教学重点、难点、关键
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
重点: 通过 突出重点
难点: 通过 突破难点
关键:
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
四、 教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。
基于本节课的特点:
应着重采用 的教学方法。即:
五、 学法
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
1、理论:
2、实践:
3、能力:
最后我来具体谈一谈这一堂课的教学过程:
六、 教学程序及设想
1、由 引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:
2、由实例得出本课新的知识点是:
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
7、板书。
8、布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。
以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
注意时间掌握
七、注意灵活导入新知识点。
电脑课件
使用投影
根据时间进行增删
读书破万卷下笔如有神,以上就是差异网为大家带来的10篇《高中数学优秀说课稿》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在差异网。