小学五年级数学课件【精选9篇】-尊龙凯时最新z6com
在平时的学习、工作或生活中,大家都写过作文,肯定对各类作文都很熟悉吧,作文根据写作时限的不同可以分为限时作文和非限时作文。那么你有了解过作文吗?它山之石可以攻玉,以下内容是差异网为您带来的9篇《小学五年级数学课件》,可以帮助到您,就是差异网小编最大的乐趣哦。
小学数学五年级应用题 篇一
1、甲、乙、丙三人在a、b两块地植树,a地要植900棵,b地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树。两块地同时开始同时结束,乙应在开始后第几天从a地转到b地?
2、有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3、某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3 3/4天可以完成,需支付1500元;由甲、丙两队承包,2 6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4、一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水。3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5、甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6、有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2 1/3小时,a,b两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?
7、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?
8、甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在b地停留了7分钟,甲车则不停地驶往c地。最后乙车比甲车迟4分钟到c地。那么乙车出发后几分钟时,甲车就超过乙车。
9、甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10、今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
11、师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12、一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。
13、一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成。如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时。.。.。.。两人如此交替工作。那么打完这部书稿时,甲乙两人共用多少小时?
14、黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15、一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地需要多长时间?
16、甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17、甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18、一辆车从甲地开往乙地。如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。甲、乙两地之间的距离是多少千米?
19、某校参加军训队列表演比赛,组织一个方阵队伍。如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。那么组成这个方阵的人数应为几人?
20、甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的。这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
21、圈金属线长30米,截取长度为a的金属线3根,长度为b的金属线5根,剩下的金属线如果再截取2根长度为b的金属线还差0.4米,如果再截取2根长度为a的金属线则还差2米,长度为a的等于几米?
22、某公司要往工地运送甲、乙两种建筑材料。甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23、从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24、师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25、六年级五个班的同学共植树100棵。已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班。又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26、甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米。乙总共跑了多少千米?
27、有高度相等的a,b两个圆柱形容器,内口半径分别为6厘米和8厘米。容器a中装满水,容器b是空的,把容器a中的水全部倒入容器b中,测得容器b中的水深比容器高的7/8还低2厘米。容器的高度是多少厘米?
28、有104吨的货物,用载重为9吨的汽车运送。已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成。
29、师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30、奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米。去时用了4天,回来时用了3天,问学校距离百花山多少千米?
31、某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费。每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32、王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33、妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元。用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?乙种卡每张多少钱?
34、一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间。作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子。大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35、小明和小燕的画册都不足20本,如果小明给小燕a本,则小明的画册就是小燕的2倍;如果小燕给小明a本,则小明的画册就是小燕的3倍。原来小明和小燕各有多少本画册?
36、有红、黄、白三种球共160个。如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37、爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁。当哥哥的年龄是妹妹年龄的。2倍时,爸爸是34岁。现在三人的年龄各是多少岁?
38.b在a,c两地之间。甲从b地到a地去送信,出发10分钟后,乙从b地出发去送另一封信。乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从b地出发骑车去追赶甲和乙,以便把信调过来。已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回b地至少要用多少时间?
39、甲、乙两个车间共有94个工人,每天共加工1998竹椅。由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅。甲车间每天竹椅产量比乙车间多几把?
40、甲放学回家需走10分钟,乙放学回家需走14分钟。已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
41、某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42、甲、乙两列火车的速度比是5:4.乙车先发,从b站开往a站,当走到离b站72千米的地方时,甲车从a站发车往b站,两列火车相遇的地方离a,b两站距离的比是3:4,那么a,b两站之间的距离为多少千米?
43、大、小猴子共35只,它们一起去采摘水蜜桃。猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克。猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克。一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃。在这个猴群中,共有小猴子几只?
44、某次数学竞赛设一、二等奖。已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%。(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45、已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46、加工一批零件,原计划每天加工15个,若干天可以完成。当完成加工任务的3/5时,采用新技术,效率提高20%。结果,完成任务的时间提前10天,这批零件共有几个?
47、甲、乙二人在400米的圆形跑道上进行10000米比赛。两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米。这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点。那么领先者到达终点时,另一人距离终点多少米?
48、小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49、甲、乙、丙、丁现在的年龄和是64岁。甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍。丁现在的年龄是几岁?
50、加工一批零件,原计划每天加工30个。当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务。问这批零件共有几个?
51、自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部。问扶梯露在外面的部分有多少级?
52、两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53、甲、乙两车同时从a地出发,不停的往返行驶于a、b两地之间。已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中c地,甲车的速度是乙车的几倍?
54、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米。求甲、乙两地的距离。
55、甲、乙两车分别从a、b两地出发,并在a,b两地间不断往返行驶。已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。求a、b两地的距离。
56、某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒。如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57、甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米。再往两个容器中注入同样多的水,使得两个容器中的水深相等。这时水深多少厘米?
58.a、b两地相距207千米,甲、乙两车8:00同时从a地出发到b地,速度分别为60千米/小时,54千米/小时,丙车8:30从b地出发到a地,速度为48千米/小时。丙车与甲、乙两车距离相等时是几点几分?
59、一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形。求原长方形的面积。
60、有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积。
61、有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍。果园里共有多少棵果树?
62、小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地。48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明。如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63、同样走100米,小明要走180步,父亲要走120步。父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64、一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离。
65、有甲、乙、丙三辆汽车,各以一定的速度从a地开往b地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66、甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67.a、b、c、d、e五名学生站成一横排,他们的手****拿着20面小旗。现知道,站在c右边的学生共拿着11面小旗,站在b左边的学生共拿着10面小旗,站在d左边的学生共拿着8面小旗,站在e左边的学生共拿着16面小旗。五名学生从左至右依次是谁?各拿几面小旗?
68、小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69、小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度。
70、小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行。结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
71、数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72、一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73、少先队员在校园里栽的苹果树苗是梨树苗的2倍。如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵。问共有多少名少先队员?苹果和梨树苗共有多少棵?
74、某人开汽车从a城到b城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离a城多少千米?
75、甲、乙两人分别从a、b两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达b地,乙到达a地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求a、b两地的距离。
76、一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77、某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78、一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块。问学生共有多少人?砖有多少块?
79、甲、乙两车分别从a、b两地同时相向而行,已知甲车速度与乙车速度之比为4:3,c地在a、b之间,甲、乙两车到达c地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80、一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
81、有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82、某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
83、小东计划到周口店参观猿人遗址。如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
84、甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船。求在静水中甲、乙两船的速度。
85、二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
86、一个容器中已注满水,有大、中、小三个球。第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍。求三个球的体积之比。
87、某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时。问翻越这座山要走多少米?
88、钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段。现需要绑好钢筋架子100套,至少要用去原材料多少根?
89、有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
90、小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍。这样小明比平时早35分到校,小明步行上学需要多少分钟?
91、甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄。
92、快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,。两车相遇时,相遇点离两站的中点70千米。甲、乙两站相距多少千米?
93、甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间。
94、有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间。
95、用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
96、公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%。(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
97、甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
98、一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
99、有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
100、一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?
小学五年级数学 课件 篇二
教学设想:
“最小公倍数”这部分内容是在学生已经学习了“因数和倍数的意义”、 “公因数和最大公因数”等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习“通分”所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。教材向学生提供了圈数的活动,从中引出公倍数与最小公倍数的概念。在这一活动中,学生不仅知道公倍数与最小公倍数,而且又让学生懂得列举的方法。因此,在巩固练习中,应让学生运用所学方法求公倍数和最小公倍数,并鼓励学生主动探索,找到其它的求最小公倍数的方法和总结规律。
教学设想:
1、尊重教材并创造性地使用。
教材是知识的载体,是教与学的中介,但教材不是一成不变的,我们在深挖教材后,可以结合教学和学生实际创造性地使用教材,充分发挥教材的指导作用。
2、让学生亲历知识的形成过程。
现代教育观点认为:学习不是为了占有知识,而是为了生长知识。因此教学中,我们不要教给学生现成的数学,而是让学生自己观察、思考、探索研究出来的数学。因此在研究最小公倍数的意义时,我让学生亲历知识的形成过程。设计看到这列数你想说些什么,看到这两列数你想说些什么?等开放的数学问题,让学生在高度的思维状态下,调动大量的原有知识参与新知识的构建。
3、让情境作为课堂教学的主线。
《新课程标准》指出数学教学要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。因此,课伊始从学生熟知的引出倍数这一前卫知识。课中又再次利用阿凡提的故事展开了知识的联想,为最小公倍数的理解铺垫了很好的基础。
教材内容:
北师大版小学数学五年级上册p51—52
教学目标:
1、理解公倍数和最小公倍数的含义。
2、探索找最小公倍数的一般方法和特殊情况下的特殊方法;
3、会利用列举法等方法找两个数的公倍数和最小公倍数。
4、通过教学,培养不同层次的学生在各自比较推理的过程中思维不同层次发展。
教学重点:
1、公倍数和最小公倍数的含义;
2、理解找最小公倍数的算理并掌握一定方法。
教学难点:
理解找最小公倍数的算理并掌握一定方法。
教具准备:
课件
教学过程:
一、复习引入
师:在前面的学习中,我们已经学习了因数和倍数。谁能说说倍数有什么特点?
二、理解公倍数和最小公倍数的含义
直观理解
师:我们来比比看,谁能又快又准确地找到4的倍数和6的倍数。
生独立找,请一生上台汇报,投影展示
师:请大家仔细观察数字表上4的倍数和6的倍数,你有什么发现?
师:(口述并板书)12,24,36,48既是4的倍数又是6的倍数,也就是说它们是4和6公有的倍数,我们给这些数取个名字叫4和6的公倍数。
师:在12,24,36,48中,最小的一个数是12,我们也给12取个名字叫4和6的最小公倍数
师:谁来说说什么叫公倍数和最小公倍数?
师:刚才我们是怎么找到4和6的最小公倍数的?
师:今天我们就来研究找最小公倍数
(板书课题:找最小公倍数)
师:我们用列举法找到了4和6的最小公倍数,请大家用列举法再在50以内找找6和9的最小公倍数。学生在课本上完成。
学生独立完成。投影展示汇报,
师:我们也可以用这样的集合圈来表示出两个数的倍数和它们的的公倍数。
小结:几个数公有的倍数就是这几个数的公倍数,其中最小的一个数是它们的最小公倍数。
三、探究方法
1、找两个数的最小公倍数
师:刚才我们用列举法找到了4和6的最小公倍数,6和9的最小公倍数。请看屏幕,请大家再用列举法找出下面几组数的最小公倍数。
7和14 8和24 9和18
5和6 2和7 9和4
学生独立完成,汇报交流
师:观察每横数据和结果,你有什么发现?为什么?
师引导学生小结特殊情况下找最小公倍数的方法
(1)两数是倍数关系时,最小公倍数就是较大的数;
(2)两数是互质关系时,最小公倍数是两数的乘积。
师:当两个数是倍数关系和互质关系时,除了用列举法,还可以用你们发现的特殊办法去找这两个数的最小公倍数,这样更简便。
我们进行一个抢答比赛,看谁能最快找到下面几组数的最小公倍数
2和6 6和7 4和12 2和5
9和5 10和11 8和10 10和20
学生抢答,请学生说说想法
2、找三个数的最小公倍数
师:我们已经会找两个数的最小公倍数了,有信心来挑战一下找三个数的最小公倍数吗?
2,3和6 3,4和5
学生独立完成,汇报
师小结:我们同样可以用列举法找到三个数的最小公倍数。
三、总结
师(指板书引导回顾):这节课,我们学了找最小公倍数,知道了几个数公有的倍数就是这几个数的公倍数,其中最小的一个数就是它们的最小公倍数。还知道了找到几个数的最小公倍数可以用列举法,以及一些特殊情况下的特殊的方法
四、巩固练习
师:大家的收获不小,我们一起来练一练,看谁能做得又对又快。
1、判断
(1)两个数的最小公倍数一定比这两个数都大。
(2)4和10的最小公倍数是40。
(3)自然数范围内,4和6的公倍数有无限个。
(4)15是最小公倍数。
(5)6是3的最小公倍数。
2、在括号里写出下面各组数的最小公倍数。
5和7 ( ) 7和1 ( )
6和8 ( ) 18和6 ( )
12和8 ( ) 52和13 ( )
10和15 ( ) 9和4 ( )
2,5和4 ( ) 3,6和8 ( )
五、生活中的数学
1、人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?
2、思考:有一包糖果,不论是分给8个人,还是分给10个人,都正好剩3块,这包糖至少有多少块?
板书设计:
找最小公倍数
几个数公有的倍数,叫做这几个数的公倍数
其中最小的一个,叫做这几个数的最小公倍数。
4的倍数有:4、8、12、16、20、24、28… …
6的倍数有:6、12、18、24、30、… …
4和6公倍数有:12、24、… …
4和6最小公倍数:12
知识点是什么? 篇三
在教育实践中,对某一个知识的泛称,多用于口语化,特指教科书上或考试的知识
小学五年级数学 课件 篇四
一、解析教材内涵
这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过图形的方法,但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。梯形面积计算公式推导有多种方法,教材显示了三种方法。
(1)两个一样的梯形拼成一个平行四边形。
(2)把一个梯形剪成两个三角形。
(3)把一个梯形剪成一个平行四边形和一个三角形。
还可以:从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形,等等。
策略与方法:
(1)加强知识之间的联系,根据图形面积计算之间的内在联系安排教学顺序,以促进知识的迁移和学习能力的提高。
(2)体现动手操作、合作学习的学习方式,让学生经历自主探索的过程
(3)重视动手操作与实验,引导学生探究,渗透“转化”思想,注意培养学生用多种策略解决问题的意识和能力。
“梯形面积的计算”
二、 复习导入
1、单元知识梳理,揭示转化思想
师:同学们,我们在多边形的面积这一单元已经学习了平行四边形和三角形面积计算方法,那谁来说说怎样计算它们的面积?
师:请大家回忆一下,它们的面积计算方法是怎么推导出来的?
2、导入主题
师:我们都是把它们转化成学过的图形来研究面积。看来转化这种方法能帮助我们解决很多问题,今天这节课我们就借助这个方法来研究梯形的面积。(板书课题:梯形的面积)
三、利用转化,实践探究
1、初步的想法,互受启发
师:同学们来看,这是一个梯形。现在呀,就请大家想一想,怎样利用转化的方法知道梯形的面积怎样来计算呢?
2、动手实践,主动探知。
师:大家这样一说,我们的思路就打开了。其实还有很多方法,同学们没有说到。
接下来我们就按照这个学习提纲深入地探究梯形面积的计算方法。
1、运用转化的方法,将梯形转化成学过的图形。
2、借助学过的方法推导梯形面积的计算方法。
3、填写学习单,小组进行交流。
3、交流反馈(学生拿学具到实物展台汇报,教师拿事先预设的大教具评价,记录)
预设:代表1:两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的(上底 下底),这个平行四边形的高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,所以:
小学五年级数学 课件 篇五
教学目标:
知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。
过程与方法:
引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。
情感、态度和价值观:
使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:
理解和掌握分数的基本性质。
教学难点:
应用分数的基本性质解决问题。
教学准备:
预习生成单、作业纸、课件
教学课时:
一课时
教学过程:
一、 导入新课,揭示课题
1、 师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)
2、 师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。
3、 指名学生汇报。
4、 师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。
二、 检查预习,自主探究
1、 出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的预习成果,形成统一意见准备汇报。)
2、 指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的成果?)
3、 (学生展示中注意分工汇报,在汇报中要注意学生用比一比的方法证明涂色部分相等,如果有用分数的意义的理解“都是相同纸的一半”或者“分子是分母的一半”理解也要给予肯定,教师应及时提出,照这样一半的理解,提问:你能在写出一个和他们大小一样的分数吗?教师及时的板演,
4、 师:其他同学还有补充吗?你们得出这个结论了吗?
三、 合作交流,探究新知
1、 师:第一张纸涂色部分是这张纸的(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。
2、 出示合作要求(课件),指名学生读一读。
3、 学生合作交流,探究学习。
4、 学生汇报中教师要及时纠正学生的语言要规范,同时,可以让小组回想补充,特别是,跳跃的两个分数的分子和分母之间的变化规律是怎样?
5、 指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?
6、 教师归纳板书:分数的分子和分母同时乘或者除以相同的数 ,分数的大小不变。
7、 请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)
8、 再读一读,说说这句话中哪个词比较关键。
9、 拓展深化,加深理解 ,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。
9、教师小结:通过刚才的学习,孩子们的表现特别出彩,老师相信你们接下来的表现会更棒。
四、应用拓展,新知内化
1、出示例2,指名读题,理解题意。
2、师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)
3、学生独立在练习本上完成,指名板演,集体订正。
4、小结:刚才,我们通过自主学习、小组探究知道了什么是分数的基本性质,下面就应用分数的基本性来解决一些实际问题。
小学五年级数学应用题100道及答案 篇六
1、前年小明比妈妈小24岁,今年妈妈的年龄是小明的3倍。小明和妈妈今年分别是多少岁?
设小明年龄是x,则3x-x=24,x=12,小明12,妈妈36
2、体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?
57÷3 19盒
答:能正好装完。
3、甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?
10000÷(115 135)=40分
答:40分钟可以打完。
4、五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?
13x14=192人
答:五年级参加植树的人至少有192人。
下面几道题目虽然属于应用题,但跟方程有关。我都是用方程解答的。
5、两辆汽车从一个地方相背而行。一车每小时行31千米,一车每小时行44千米。经过多少分钟后两车相距300千米?
解:设两车x时后相遇。
31x 44x=300
75x=300
x=4
4小时=240分钟
答:经过240分钟后两车相距300千米。
6、两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工。甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?
解:设x天后挖通隧道
3x 4x=119
7x=119
x=17
答:经过17天挖通隧道。
7、学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?
解:设舞蹈队有x人
6x x=140
7x=140
x=20人
答:舞蹈队有20人。
从这里开始不是方程题了。
8、兄弟两个人同时从家里到体育馆,路长1300米。哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?
1300x2=2600米
2600÷(180 80)
=2600÷260
=10分
答:这时哥哥走了10分钟。
9、六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?
360 480 400=1240个
答:至多可做1240个小礼包。
10、淘气买了40个气球,请同学来家比吹气球。为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加。
40÷2=20人40÷4=10人40÷5=8人
40÷8=5人40÷10=4人40÷20=2人
答:请同学的方法有6种,分别是:20人,10人,5人,8人,4人,2人。
11、一块梯形的玉米地,上底15米,下底24米,高18米。每平方米平均种玉米9株,这块地一共可种多少株玉米?
(15 24)x18÷2=351平方米
351x…差异网 chayi5.com…9=3195株
答:这块地可种玉米3159株。
12、某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?
5x4x3=60人60 1=61人
答:这班有61人。
13、王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?
7x5x3=105粒105 1=106粒
答:这盒巧克力糖至少有106粒。
14、晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖。设计师准备了边长是30厘米的方砖,请你算一算:需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?
15米=150分米1.2米=12分米30厘米=3分米
150x12=1800平方分米3x3=9平方分米
1800÷9=200块200x3=600元
答:需要200块这样的方砖,需要600元。
15、有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?
70x45=3150平方米3150÷90=35米
答:高是35米。
16、一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根。这批钢管有多少根?
10-5 1=6层
(10 5)x6÷2
=15x6÷2
=90÷2
=45根
答:这批钢管有45根。
17、有一些糖果,平均分别给21个小朋友剩20块,平均分给35个小朋友剩34块,平均分给56个小朋友剩55块。你知道这堆糖果至少有多少块吗?
解:21、35、56的最小公倍数是840,840-1=839(块),答:这堆糖果至少有839块
18、2台同样的抽水机,3小时可以浇地1.2公顷,1台抽水机每小时可以浇地多少公顷?
1.2÷3=0.40.4÷2=0.2
五年级数学知识点 篇七
一、填空:24分
1、3.85立方米=()立方分米4升40毫升=()升
2、用一根长48厘米的铁丝焊成一个正方体框架(接头处不计)表面积是()平方厘米,体积是()立方厘米
3、在括号里填上适当的单位名称:
一块橡皮的体积大约是8()一个教室大约占地48()
一辆小汽车油箱容积是30()小明每步的长度约是60()
4、20以内的自然数中(包括20),奇数有()偶数有()
5、在14、6、15、24中()能整除(),()和()是互质数
6、能同时被2、3、5整除的最大两位数是(),把它分解质因数是()
7、5□中最大填()时这个数能被3整除,这个数的约数有()
8、如果a能被b整除,则a和b的最大公约数是(),a和b的最小公倍数是()
9、已知a=2×2×3×5b=2×5×7,a和b公有的质因数有(),它们的最大公约数是()
10、一根长2米的长方体钢材,沿横截面截成两段后,表面积增加0.6平方分米,这段长方体钢材的体积是()立方分米。
二、判断:5分
1、一个非0自然数不是质数,就是合数。()
2、一个数的倍数一定大于它的约数。()
3、两个质数的积一定是合数。()
4、一个长方体(不含正方体)最多有8条棱相等。()
5、大于2的偶数都是合数。()
三、选择:10分
1、自然数a除以自然数b,商是5,这两个自然数的最小公倍数是()
a.ab.bc.5
2、a=2×2×3b=2×3×5ab的最大公约数是()
a.6b.3c.2
3、正方体的棱长扩大3倍,体积扩大()
a.3倍b.9倍c.27倍
4、15与()是互质数
a.18b.28c.102
四、计算:24分
(1)用短除法求下面各组数的最大公约数(3个数的除外)和最小公倍数
16和2445和6026和39
10、15和4512、14和42
(2)递等式计算:
2.9×1.4 2×0.16200-(3.05 7.1)×18
30.8÷[14-(9.85 1.07)](2.44-1.8)÷0.4×20
五、应用题:37分第2题7分,其余每题6分
1、一段长方体钢材,长1.6米,横截面是边长4厘米的正方形。每立方厘米刚重7.8克,这块方钢重多少?
2、用铁皮做一个无盖的长方体油桶,长和宽都是4分米,高6分米,用铁皮多少平方分米?桶内放汽油,每升油重0.82千克,这个油桶可装汽油多少千克?
3、一块棱长是0.6米的正方体的钢坯,锻成横截面是0.09平方米的长方体钢材,锻成的钢材有多长?(用方程解答)
4、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深12厘米。把一块石头浸入水中后,水面升到16厘米,求石块的体积。
5、甲乙两地相距120千米,某人骑自行车,从甲地到乙地,去时用了5小时,回来时加快速度用了4小时,他往返一次平均每小时行多少千米?
6、要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮?
六、思考题:
把长8厘米,宽12厘米,高5厘米的木块锯成棱长2厘米的正方体木块。可锯多少块?
小学五年级数学知识点 篇八
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、公因数:几个数共有的因数叫做它们的公因数,其中的一个叫做公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的公因数和最小公倍数:
①成倍数关系的两个数,公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
小学五年级数学 课件 篇九
教学目标:
1、结合解决问题的具体情境,体会面积单位换算的必要性,以及面积单位之间的换算关系。
2、认识公顷、平方千米等面积单位。
3、能进行简单的面积单位换算,解决一些简单的实际问题。
教学重点:
体验1公顷、1平方千米的实际大小,发现平方千米和公顷之间的进率。
教学难点:
正确建立1公顷、1平方千米的表象。
活动准备:
1、引导学生通过观察、比较,自主发现如果用于计量面积很大的土地,需要用公顷和平方千米作单位比较方便。
2、使学生进一步体验解决问题的乐趣,提高解决问题的策略水平。
活动过程:
一、复习铺垫
1、在括号里填入合适的面积单位。
(1)一张银行卡的面积大约是40( )。
(2)数学书的封面面积大约是2( )。
(3)我们所在教室的面积大约是50( )。
(4)我校田径场的面积大约是1( )。
2、我们已经学过了哪些面积单位?联系实际说一说。
二、揭示课题
面积单位在生产、生活中有着广泛的应用,在此之前,同学已经学习和掌握了平方厘米、平方分米、平方米这些较小的面积单位。在生产、生活中,往往需要度量较大图形的面积,如:某林业局要对当地一块沙漠地区进行绿化,绿化区域是一个长为5千米、宽为4千米的长方形,他的面积是多少?学生列式计算,5000×4000=20000000平方米,即面积是两千万平方米,用学过的面积单位平方米来表示这个较大的数不方便,怎样解决这个问题呢?这就是这节课我们要学的内容。比平方米更大的面积单位“公顷”与“平方千米”。
三、活动感知1公顷的大小。
1、你认为1公顷到底有多大呢?请你发挥自己的想像猜一猜。
2、师指出:边长是100米的正方形(土地),面积是1公顷。算一算:1公顷等于多少平方米?(板书:1公顷=10000平方米)公顷是比平方米大得多的面积单位。
3、2公顷有多大呢?5公顷呢?
4、边长是100米的正方形到底有多大?联系日常生活实例找一找。
5、出示边长为50米的场地。
(1)这个正方形有1公顷吗?你是怎么判断的?
(2)多少个这么大的地方就是1公顷了?你会怎么把它们拼起来呢?
(3)展示各种拼法。
6、出示边长10米(几位同学手拉手为边长)的图。
(1)这个正方形有多大?
(2)多少个这么大的地方就是1公顷了?你会怎么把它们拼起来呢?
(3)展示各种拼法。
7、你能判断我们整个学校有多大吗?你是怎样判断的?多少个这样的面积大约是1公顷?我们的教室面积有多大?多少间教室面积大约是1公顷?
8、在我们学校周围有没有1公顷大小的地方?能举例说明吗?
小结:在估计时,你们都运用了什么方法?
(设计意图:通过各种活动,让学生充分感知1公顷的大小,形成1公顷的表象。)
四、想一想,1平方千米有多大?
1、边长是1000米的正方形,面积是1平方千米。它比两个天安门广场的占地面积还要大。
2、平方千米和平方米、公顷之间有什么关系?1平方千米等于多少平方米?等于多少公顷?学生进行面积单位的换算。由此得出:1平方千米=1000000平方米;1公顷=10000平方米;1平方千米=100公顷
天安门广场的面积为40公顷,1平方千米相当于几个天安门广场的占地面积呢?比两个天安门广场的占地面积还要大,相当于2个天安门广场的面积。
以上就是差异网为大家带来的9篇《小学五年级数学课件》,希望可以启发您的一些写作思路。