三角函数教学课件最新6篇-尊龙凯时最新z6com

发布时间:

三角函数是一类基本的、重要的函数,在数学、其他学科以及生产实践中都有广泛的应用,差异网为您精心收集了6篇《三角函数教学课件》,可以帮助到您,就是差异网小编最大的乐趣哦。

角函数公式大全 篇一

三角函数常用公式:(^表示乘方,例如^2表示平方)

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

以及两个不常用,已趋于被淘汰的函数:

正矢函数 versinθ =1-cosθ

余矢函数 vercosθ =1-sinθ

同角三角函数间的基本关系式:

·平方关系:

sin^2(α) cos^2(α)=1

tan^2(α) 1=sec^2(α)

cot^2(α) 1=csc^2(α)

·积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形abc中,

角a的正弦值就等于角a的`对边比斜边,

余弦等于角a的邻边比斜边

正切等于对边比邻边,

三角函数恒等变形公式

·两角和与差的三角函数:

cos(α β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α β)=(tanα tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1 tanα·tanβ)

·辅助角公式:

asinα bcosα=(a^2 b^2)^(1/2)sin(α t),其中

sint=b/(a^2 b^2)^(1/2)

cost=a/(a^2 b^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1 cosα)/2)

tan(α/2)=±√((1-cosα)/(1 cosα))=sinα/(1 cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1 cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1 cos(2α))

·万能公式:

sinα=2tan(α/2)/[1 tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1 tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α β) sin(α-β)]

cosα·sinβ=(1/2)[sin(α β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α β) cos(α-β)]

sinα·sinβ=-(1/2)[cos(α β)-cos(α-β)]

·和差化积公式:

sinα sinβ=2sin[(α β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α β)/2]sin[(α-β)/2]

cosα cosβ=2cos[(α β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α β)/2]sin[(α-β)/2]

高考数学三角函数重点考点 篇二

由解析式研究函数的性质

常见的考点:

求函数的最小正周期,求函数在某区间上的最值,求函数的单调区间,判定函数的奇偶性,求对称中心,对称轴方程,以及所给函数与y=sinx的图像之间的变换关系等等。

对于这些问题,一般要利用三角恒变换公式将函数解析式化为y=asin(ωx φ)的形式,然后再求相应的结果即可。

在这一过程中,一般要先利用诱导公式、二倍角公式、两角和与差的恒等式等将函数化为asinωx bcosωx形式(其中常见的是两个系数a、b的比为1:1,1:1),然后再利用辅助角公式,化为y=asin(ωx φ)即可。

高中数学三角函数知识点 篇三

锐角三角函数定义

锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。

正弦(sin)等于对边比斜边;sina=a/c

余弦(cos)等于邻边比斜边;cosa=b/c

正切(tan)等于对边比邻边;tana=a/b

余切(cot)等于邻边比对边;cota=b/a

正割(sec)等于斜边比邻边;seca=c/b

余割(csc)等于斜边比对边。csca=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα。

平方关系:

sin^2(α) cos^2(α)=1

tan^2(α) 1=sec^2(α)

cot^2(α) 1=csc^2(α)

积的关系:

sinα=tanα?cosα

cosα=cotα?sinα

tanα=sinα?secα

cotα=cosα?cscα

secα=tanα?cscα

cscα=secα?cotα

倒数关系:

tanα?cotα=1

sinα?cscα=1

cosα?secα=1

两角和与差的三角函数:

sin(a b)=sinacosb cosasinb

sin(a-b)=sinacosb-cosasinb?

cos(a b)=cosacosb-sinasinb

cos(a-b)=cosacosb sinasinb

tan(a b)=(tana tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1 tanatanb)

cot(a b)=(cotacotb-1)/(cotb cota)

cot(a-b)=(cotacotb 1)/(cotb-cota)

三角和的三角函数:

sin(α β γ)=sinα?cosβ?cosγ cosα?sinβ?cosγ cosα?cosβ?sinγ-sinα?sinβ?sinγ

cos(α β γ)=cosα?cosβ?cosγ-cosα?sinβ?sinγ-sinα?cosβ?sinγ-sinα?sinβ?cosγ

tan(α β γ)=(tanα tanβ tanγ-tanα?tanβ?tanγ)/(1-tanα?tanβ-tanβ?tanγ-tanγ?tanα)

辅助角公式:

asinα bcosα=(a^2 b^2)^(1/2)sin(α t),其中

sint=b/(a^2 b^2)^(1/2)

cost=a/(a^2 b^2)^(1/2)

tant=b/a

asinα bcosα=(a^2 b^2)^(1/2)cos(α-t),tant=a/b

倍角公式:

sin(2α)=2sinα?cosα=2/(tanα cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1 cosα)/2)

tan(α/2)=±√((1-cosα)/(1 cosα))=sinα/(1 cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1 cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1 cos(2α))

万能公式:

sinα=2tan(α/2)/[1 tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1 tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα?cosβ=(1/2)[sin(α β) sin(α-β)]

cosα?sinβ=(1/2)[sin(α β)-sin(α-β)]

cosα?cosβ=(1/2)[cos(α β) cos(α-β)]

sinα?sinβ=-(1/2)[cos(α β)-cos(α-β)]

和差化积公式:

sinα sinβ=2sin[(α β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α β)/2]sin[(α-β)/2]

cosα cosβ=2cos[(α β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α β)/2]sin[(α-β)/2]

推导公式:

tanα cotα=2/sin2α

tanα-cotα=-2cot2α

1 cos2α=2cos^2α

1-cos2α=2sin^2α

1 sinα=(sinα/2 cosα/2)^2

其他:

sinα sin(α 2π/n) sin(α 2πx2/n) sin(α 2πx3/n) …… sin[α 2πx(n-1)/n]=0

cosα cos(α 2π/n) cos(α 2πx2/n) cos(α 2πx3/n) …… cos[α 2πx(n-1)/n]=0以及

sin^2(α) sin^2(α-2π/3) sin^2(α 2π/3)=3/2

tanatanbtan(a b) tana tanb-tan(a b)=0

函数名正弦余弦正切余切正割余割

在平面直角坐标系xoy中,从点o引出一条射线op,设旋转角为θ,设op=r,p点的坐标为(x,y)有

正弦函数sinθ=y/r

余弦函数cosθ=x/r

正切函数tanθ=y/x

余切函数cotθ=x/y

正割函数secθ=r/x

余割函数cscθ=r/y

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的`对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

万能公式

(1)(sinα)^2 (cosα)^2=1

(2)1 (tanα)^2=(secα)^2

(3)1 (cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tana tanb tanc=tanatanbtanc

证:

a b=π-c

tan(a b)=tan(π-c)

(tana tanb)/(1-tanatanb)=(tanπ-tanc)/(1 tanπtanc)

整理可得

tana tanb tanc=tanatanbtanc

得证

同样可以得证,当x y z=nπ(n∈z)时,该关系式也成立

由tana tanb tanc=tanatanbtanc可得出以下结论

(5)cotacotb cotacotc cotbcotc=1

(6)cot(a/2) cot(b/2) cot(c/2)=cot(a/2)cot(b/2)cot(c/2)

(7)(cosa)^2 (cosb)^2 (cosc)^2=1-2cosacosbcosc

(8)(sina)^2 (sinb)^2 (sinc)^2=2 2cosacosbcosc

万能公式为:

设tan(a/2)=t

sina=2t/(1 t^2)(a≠2kπ π,k∈z)

tana=2t/(1-t^2)(a≠2kπ π,k∈z)

cosa=(1-t^2)/(1 t^2)(a≠2kπ π,且a≠kπ (π/2)k∈z)

就是说都可以用tan(a/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。

三角函数关系

倒数关系

tanα?cotα=1

sinα?cscα=1

cosα?secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscαcα

平方关系

sin^2(α) cos^2(α)=1

1 tan^2(α)=sec^2(α)

1 cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(α β)=sinαcosβ cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ sinαsinβ

tan(α β)=(tanα tanβ)/(1-tanα?tanβ)

tan(α-β)=(tanα-tanβ)/(1 tanα?tanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α)

高考数学三角函数重点考点 篇四

根据条件确定函数解析式

这一类题目经常会给出函数的图像,求函数解析式y=asin(ωx φ) b。

a=(最大值-最小值)/2;

b=(最大值 最小值)/2;

通过观察得到函数的周期t(主要是通过最大值点、最小值点、“平衡点”的横坐标之间的距离来确定),然后利用周期公式t=2π/ω来求得ω;

利用特殊点(例如最高点,最低点,与x轴的交点,图像上特别标明坐标的点等)求出某一φ';

最后利用诱导公式化为符合要求的解析式。

常用的三角函数诱导公式 篇五

三角函数诱导公式一:

任意角α与- www.chayi5.com α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

三角函数诱导公式二:

设α为任意角,π α的三角函数值与α的三角函数值之间的关系:

sin(π α)=-sinα

cos(π α)=-cosα

tan(π α)=tanα

cot(π α)=cotα

三角函数诱导公式三:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

三角函数诱导公式四:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ α)=sinα(k∈z)

cos(2kπ α)=cosα(k∈z)

tan(2kπ α)=tanα(k∈z)

cot(2kπ α)=cotα(k∈z)

三角函数诱导公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

三角函数诱导公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2 α)=cosα

cos(π/2 α)=-sinα

tan(π/2 α)=-cotα

cot(π/2 α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2 α)=-cosα

cos(3π/2 α)=sinα

tan(3π/2 α)=-cotα

cot(3π/2 α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

注意:在做题时,将a看成锐角来做会比较好做。

角函数万能公式 篇六

万能公式

(1)(sinα)^2 (cosα)^2=1

(2)1 (tanα)^2=(secα)^2

(3)1 (cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tana tanb tanc=tanatanbtanc

证:

a b=π-c

tan(a b)=tan(π-c)

(tana tanb)/(1-tanatanb)=(tanπ-tanc)/(1 tanπtanc)

它山之石可以攻玉,以上就是差异网为大家整理的6篇《三角函数教学课件》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。

306 73111
网站地图