三角形三边的关系数学教学设计优秀7篇-尊龙凯时最新z6com

发布时间:

作为一名老师,可能需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?差异网为朋友们精心整理了7篇《三角形三边的关系数学教学设计》,可以帮助到您,就是差异网小编最大的乐趣哦。

角形边的关系教案 篇一

教学目标:

1、通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。

2、引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。

3、培养学生积极的学习态度和乐于探究的数学情感。

教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。

教学难点:运用三角形三边的关系解决实际问题。

教学准备:课件

教学过程:

一、谈话引入

1、举例:生活中哪些物体的面是三角形的?

2、复习三角形的各部分名称。

提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?

引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……

3、导入新课。

三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题)

二、交流共享

1、课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?

2、操作交流。

(1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。

教师巡视,了解学生的操作情况。

(2)小组交流。

布置学生将各自的操作情况在四人小组内进行交流。

(3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?

学生回答预设:

①选择8cm、5cm、4cm三根小棒,能围成三角形。

②选择5cm、4cm、2cm三根小棒,能围成三角形。

③选择8cm、4cm、2cm三根小棒,不能围成三角形。

④选择8cm、5cm、2cm三根小棒,不能围成三角形。

追问:第③种情况和第④种情况为什么不能围成三角形?

引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。

教师小结:因为4cm 2cm8cm,5cm 2cm8cm,所以不能围成三角形。

3、探索规律。

师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢?

(1)布置探索任务。

从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?

(2)学生独立探索。

(3)交流汇报。

第①种情况:4 58、4 85、5 84;

第②种情况:4 25、4 52、5 24。

小结:任意两根小棒长度的和一定大于第三根小棒。

4、验证规律。

提问:三角形任意两边长度的和一定大于第三边吗?

(1)画一画:用三角尺画一个三角形。

(2)量一量:量出三角形的各边长度。(单位:毫米)

(3)算一算:算出任意两边之和与第三边长度的关系。

(4)总结规律。

提问:通过验证,你发现三角形三边的长度有哪些关系?

师生共同总结得出:三角形任意两边长度的和大于第三边。

追问:对于“任意两边”这四个字,你是怎么理解的?

5、议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?

引导学生得出:5厘米长的小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。

三、反馈完善

1、完成教材第78页“练一练”第1题。

先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。

2、完成教材第78页“练一练”第2题。

这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差第三边两边之和”。

四、反思总结

通过本课的学习,你有什么收获?还有哪些疑问?

《三角形三边的关系》教案教学设计 篇二

教学目标:

1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

教学重点、难点:探索并发现三角形任意两边之和大于第三边。

教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。

教学过程:

一、复习旧知,导入新课

这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

二、动手操作,发现问题

师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

生:三角形。

师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。

三、猜想验证,发现规律

师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

生:换一根小棒

师:怎样换?同学们说的都是你们的猜想(演示猜想1)

1、学法指导

师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。

操作要求:

(1)、2人一组合作完成四种拼法

(2)、围三角形时要注意首尾相连。

(3)、完成后,填写好活动记录表准备交流

第一根小棒长

第二根小棒长

第三根小棒长

能否围成三角形

2、 动手操作,寻找规律(师巡视,并指导)

3、 交流汇报,探究规律。

师:哪个小组愿意来汇报。

小组上台展示,

3厘米、8厘米、10厘米 能

3厘米、5厘米、10厘米 不能

3厘米、5厘米、8厘米 不能

5厘米、8厘米、10厘米 能

师:其它组有不同意见吗?

师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

三根小棒要围成三角形,必须满足什么条件?

通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?

先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

生:

师:其他同学赞同吗?谁再来说一说。

师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3 4〈8)你很会观察。(演示)

师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

生:3 5=8 重合了 不能

师:是这样吗?(演示)请看大屏幕。

师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

师:那么怎样才能围成三角形呢?

生:两条边加起来要大于第三边就行了。

师(板书):两边之和大于第三边

师:我们来看看能围成三角形的这两组是不是这样的呢,3 8>10、8 5>10

看起来是这样的。

3、师:回头看不能围成的情况,也有3 8>4、4 8>3、3 8>5、5 8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

生:有一种不符合就不行了

师:看来只是其中的两条边之和大于第3条边是不完整的,

生1:加“任何”、“任意”

生2:其他两边之和都大于第三条边。

生3:无论哪两条边之和都要大于第三边。

4、归纳小结

师:看来只是其中的两条边之和大于第3条边是不完整的,

师:这句话概括说就是:任意两边之和大于第三边(板书:任意)

师:是这样吗?再挑选一组能围成三角形的三条边,来验证:

生:3 4>5、3 5>4、4 5>3,

师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

四、课堂小结

老师在生活中还看到了这么一种现象:(演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?

师:今天你有什么收获?

其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。

角形边的关系教案 篇三

【教学目标】

1、使学生理解三角形的定义,掌握三角形的特征和特性。

2、知道三角形高和底的含义,会在三角形内画高。

3、通过观察和操作,培养学生比较、概括、判断、推理的能力并发展学生空间观念,实现知识和技能的正迁移,让学生做到活学活用。

【教学重点】

使学生掌握。

【教学难点】

学会给三角形画高。

【教具】

三角板一套、多媒体课件

【教学过程】

一、课前预习

1、三角形的含义是什么?

2、三角形的特征和特性是什么?

3、怎样画三角形的高?

二、展示交流

1、动手操作:用四边形、三角形撑起两个支架,然后对比、观察,发现了什么结论?

2、课件出示电线杆、自行车图片,体会三角形的稳定性。

3、列举生活中应用三角形稳定性的例子。

4、提示课题:三角形的认识

三、探究活动,掌握特征

1、理解三角形的含义

①通过实物演示和出示课件,总结:什么叫三角形?

②学生自己画一个三角形。

2、探究三角形的特征

(1)课件演示,说出三角形各部分名称。(边、顶点和角)

(2)课件出示三个三角形,观察这三个三角形,你还性理了什么?

(3)动手画一个三角形,标出顶点、边和角。

(4)用字母abc表示三角形。

3、认识三角形的底和高

(1)课件出示三角形屋顶的房子和斜拉桥,你能想出办法测量三角形的房顶和斜拉桥的高度吗?

(2)课件演示,抽象出三角形,学生作反馈测量方法,引出三角形高和底的含义。

(3)出示有一组底和高的三角形,观察、讨论,还有其它的底和高吗?

(4)完成教材第86页练习十四第1题

四、检测反馈

1、填空

①三角形是由()条边同()个顶点,()个角组成的。

②三角形具有()性。

③三角形有()条高,有()个底。

2、判断

(1)由三条线段组成的图形是三解形。()

(2)三角形有三条高,三个底。()

(3)自行车车架运用了三角形的稳定性原理。()

3、画出这个三角形的三条高。

四、板书设计

三角形的认

稳定性由三条线段围成的图形叫做三角形

教后反思:本节课的概念比较多.学生在学习这本课的时候,对于画高,有个别同学画得不对,可见是以前学习画垂线的时候,掌握得不太好.在今后,应该多加练习.

《三角形三边的关系》教案教学设计 篇四

教学目标:

1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。

教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。

教学过程:

一、 创设情境

1、出示情境图。

师:通过刚才摆三角形,你发现了什么?

(引导学生提出这样的问题:为什么我们用的三张纸条中有两条长的和大于第三条长却没有摆成三角形呢?)

师:通过刚才是实验,我们可以发现三角形三条边在长短上有某种关系,但究竟怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。

2、 动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。

师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的实验记录。

(1)4c 5c 9c (2) 3c 6c 10c (3) 6c 7c 8c

学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边

( 1 )不 能4+5=9 4+9>5 5+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形

( 2 )不 能6+10>3 3+10>6 3+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形

( 3 )能6+7>8 6+8>7 7+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的含义。

三、 拓展应用:

1、 说一说老师为什么走中间的这条路最近?

2、 判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)

(1)3,6,9 (2)4,4,10

(学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)

3、解决问题:

师:小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。

(1)第三根木条可以是多少分米?(取整数)

(2)第三边的木条的长度是a分米,那么a的取值范围是( )

四、 回顾反思:

同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗?

《三角形三边的关系》教案教学设计 篇五

教学目标:

1、理解两点之间线段最短,理解三角形任意两边的和大于第三边。

2、经历拼一拼、移一移等操作活动,探索、归纳出三角形三边的关系,培养学生自主探索,合作交流、抽象概括能力,积累活动经验。

3、渗透模型思想,体验数据分析,数形结合方法在探究过程中的作用。

教学重点:

理解三角形任意两边之和大于第三边。

教学难点:

理解两条线段和等于第三条线段时不能围成三角形,理解任意二字的含义。

教学资源:

小棒、多煤体课件。

教学过程:

同学们好,这节课我们研究三角形三边的关系。

一、 创设情境,导入新课。

1、小明上学,你猜他会走哪条路?这条路与其他两条路相比有什么特点?(中间这条路直直的,是一条线段,上面哪条路是两条线段组成的,下面这条路是一条曲线。)小明为什么走中间这条路?(这条路最短)课件演示:三条连线比较长短(师:两点之间所有连线中线段最短,这条线段的长度,叫做两点间的距离。)

2、实物展台上放三根小棒:xx,现在这样围成三角形了吗?谁来围一围?刚才没围成三角形,现在就围成了,围成三角形的关键是什么?(每相邻两条线段的端点相连)

3、如果从三根小棒中拿走一根,剩下的两根能围成三角形吗?能想办法变成三小棒吗?(把一根小棒剪成两段,变成三根小棒)把两根小棒变成三根,就一定能围成三角形吗?这节课我们一起研究三角形边的关系。板书课题;三角形三边的关系。

二、操作演示,观察发现。

1、(课件出示四根小棒)有四根小棒6、5、3、2(单位:厘米)

2、任意取三根摆一摆三角形,会有几种情况?(课件:①6、5、3;②6、5、2;③6、3、2;④5、3、2。)

3、请同学们动手摆一摆,并填写好学习单,小组交流有什么发现?。

4、组织全班交流:学生边说,老师边课演示。

第一种情况:6 5>3,6 3>5,5 3>6;

第二种情况:6 5>2,6 2>5,5 2>6;

第三种情况:6 3>2,6 2>3,3 2<6;

第四种情况;5 3>2,5 2>3,3 2<5。

三角形任意两边的和大于第三边。

三、实践应用,拓展延伸。

在能拼成三角形的各组小棒下面画(单位:cm)

四、反思总结,自我建构。

这节课你有什么收获?(三角形任意两条边的和大于第三边。)

这节课我们就研究到这儿,同学们再见!

《三角形三边的关系》说课稿 篇六

各位领导、老师:大家好!

今天我说课的内容是《三角形三边的关系》。首先我对教材进行简单的分析:

一、说教材

《三角形三边的关系》是人教版义务教育课程标准实验教科书《数学》第八册第82页的教学内容,属于"空间与图形"的领域。这部分内容是在学生知道了三角形有三条边、三个角和具有稳定性的基础上探索三角形三边的关系。大家知道,在平面图形里,三角形是由3条线段围成的,但并不意味着任意三条线段都能围成三角形。所以掌握这部分内容,可以进一步丰富学生对三角形的认识和理解;它既是对所学知识的延续,又是后继学习多边形的基础,在知识体系上具有承上启下的作用。

几何初步知识无论是线、面、体还是图形的特征、性质,对于小学生来说都比较抽象,要解决数学的抽象性和小学生思维之间的矛盾,就要充分运用直观性进行教学,让学生动手做数学,而不是用耳朵听数学,让学生经历"数学化"、"做数学"等过程,强调在教师的引导作用下,由"获得知识结论快乐"转变为"探究发现知识快乐",并注重与生活实际紧密联系,让学生获得良好的数学教育。依据新课标的精神、结合学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:

(一)教学目标

1、认知目标:通过创设情景、实物操作、观察比较,发现三角形任意两边之和大于第三边。

2、能力目标:培养学生自主探究、观察、比较和概括能力以及小组合作的意识,能根据三角形三边关系解释生活中的现象,提高解决问题的能力。

3、情感目标:结合教学内容,渗透数学文化、思想、方法的教育。

(二)说教学重难点

探究发现"三角形任意两条边的和大于第三边"是教学重点,而理解"任意两边"是本节课的教学难点。

接下来说说这节课的教法与学法

二、说教法

新课标指出,教无定法,贵在得法。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。新课程改革要求教师要由传统意义上知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;课堂教学要体现以学生为中心,让学生真正成为学习的主人。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在这一系列活动中经历"数学化"的过程

三、说学法

有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,动手操作法、观察发现法、自主探究法、合作交流法是这一节课的学习方法。整节课让学生体验"做数学"的过程。

以下是我的而教学流程。

四、说教学流程 教学流程按照8个环节进推进:

第一环节:矛盾冲突。

兴趣是最好的老师,上课一开始,我给学生变魔术,用长度分别是 15厘米,13厘米  10厘米的三根小棒首尾相接围成三角形,在学生认为我的魔术太简单而不屑一顾时,我让一个学生也上来变一个(给表演的学生提供长度是15厘米,9厘米,26厘米的小棒)学生围不了三角形。我说,他没能围出一个三角形,你能吗?(不能)问题到底出在哪?学生估计会把注意力集中在第三根小棒上,认为第三根小棒太长了,如果是这样,我就把第三根小棒换成5厘米的,还是围不了,此时,教师引导学生提出疑问:怎么就围不起来的呢?看来,看来,三根小棒是否能围成三角形跟它们的长度有关,这节课,老师和你们一起来研究三角形三边的关系。(板书课题)

在教师能变魔术,而学生却变不成的矛盾冲突中,可能已经有大部分学生开始这节课的数学思考了。此处"魔术"的价值不仅仅在于激发学生学习的兴趣,还在于成功地将学生引入到数学思考之中。

第二环节:初建模型。

新课标强调要从学生已有的生活经验出发,让学生动起来,活起来,让他们在猜想、质疑、验证、探究、问题解决等过程中,经历摆一摆、围一围、比一比、想一想、议一议等活动,努力营造协作互动、大胆表达课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。

给学生提供研究的材料,(5根小棒,不同颜色长度不同,红色(2根)3厘米,绿色5厘米,蓝色7厘米,黄色8厘米。)并提出操作要求(ppt出示)

(1)从这5根小棒中任意选取3根围一个三角形;

(2)同桌2人合作,共同摆小棒。

(3)摆完后共同观察,并把结果记录在表格中。

(4)音乐响起开始,音乐停止时活动结束。

看哪一组完成最多最好。

这一环节是要发挥每个人的。作用,全员参与,人人有事做,避免小组合作流于形式。

反馈(1)3  3   5      (2)3  3  7

(3)3 3  8        (4)3 5  7

(5)3  5   8      (6)3 7   8

(7)5 7  8      (ppt出示表格)

ppt演示(2)  (3)  (5)

观察:三根小棒在什么情况下能围城三角形呢?

最后引导归纳:三角形两条边的和大于第三条边(师板书)

随着教学活动的逐步展开,教师围绕"核心知识"精心设疑,引导学生操作观察比较,使学生的思考沿着教学目标不断深入。

第三个环节,完善模型。

回到变魔术的环节,验证学生没有围成的三角形三边的关系,9 15<26再一次引起冲突,但是9 15>5怎么也不能围成三角形呢?

完善性质:三角形任意两边的和大于第三边

验证老师变出的三角形三边的关系,10 13>15   10 15>13  15 13>10

第四环节:验证模型。

验证:让学生画出任意三角形,量出三条边的长短再算一算,三边之间的关系。

引导学生经历从特殊到一般的数学思考过程,让学生猜想,发现,归纳,验证,寻找反例等数学活动中思考、辨析、释疑、概括、推理,有效渗透从特殊到一般的数学思想,为学生构建了一种结构严谨、逻辑严密的数学思维模式。

第五环节:应用模型。

判断下面的小棒能否围成三角形

(1)2厘米     3厘米  8厘米   (   )

(2)4厘米    7厘米    8厘米   (   )

(3) 6厘米     5厘米  8厘米    (    )

(4)5厘米  14厘米   9厘米   (   )

(5)5厘米  9厘米   13厘米    (   )

第六环节:优化模型、并体会极限思想。

——优化

有的学生很快做出判断,他们有什么诀窍?

这一过程实际上是打破刚才建构的数学模型,抓住问题本质属性,留下两条短边与长边比较,形成最优化的数学模型结构——两条短边的和大于第三边,

——极限思想

让学生重点观察(4)中的数据

提问:5厘米和9厘米能与多长的小棒围成三角形?

学生思考:第三边不比4厘米短,不能超过14厘米(课件演示)

这一环节是通过直观操作让学生感悟数学的极限思想,让学生感受当两边的长度是5厘米和9厘米时,第三边的长度在4与14厘米之间,感受当第三边变成4厘米或14厘米时,三角形便不存在,将成为一条直线,感受量变到质变的过程,充满理性的思考的数学课堂才是真正扎实有效甚至高效的数学课堂。

第七个环节、走进生活

老师要去小雨家家访,走哪条路近?请你用今天学习的知识来解释

《三角形三边关系》说课

走小路近(让学生说明理由)

(ppt显示草坪)

还走这条路吗?

这一环节的设计不仅使学生深化了对三角形三边关系的理解,还让学生感知作为人还应该有一份社会责任,有一份人文情怀,彰显数学的大教育观。)

第八个环节:课后延伸。

播放《将军饮马》的故事(课件呈现图)

教师讲述:古希腊有一位聪明国人的学者,名叫海伦,有一天,一位将军不远千里来向他请教一个百思不得其解的问题,将军从a地出发到河边饮马,再到b地视察军营(出示图),怎么走路线最短?(出示路线图)你们能用今天学习的知识解决吗?

五、说板书设计

板书设计力求做到重点突出,一目了然。

纵观本节课,体验是学生学习的前提,是学生学习数学的本职与要求,可以说,没有体验就没有真正意义上的学习,慢慢跟着学生的脚步,让学经历的探索过程,在这一过程中,学生参与、经历、思考、反思、发展,作为教者,我们一路倾听花开的声音。

教学是一种遗憾的艺术,需要我们不断的尝试。也正是因为有了这份遗憾,才促使我们的教学逐渐走向成熟。我想,我的说课还存在很多不足,请在座的领导和同行多提宝贵意见,在今后的教学中,我将继续努力探索。

谢谢大家!

初一数学教案 篇七

教学目的

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

重点、难点

重点:工程中的工作量、工作的效率和工作时间的关系。

难点:把全部工作量看作“1”。

教学过程

一、复习提问

1.一件工作,如果甲单独做2小时完成,那么甲独做i小时完成全

部工作量的多少?

2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

全部工作量的多少?

3.工作量、工作效率、工作时间之间有怎样的关系?

二、新授

阅读教科书第18页中的问题6。

分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

2.怎样用列方程解决这个问题?本题中的等量关系是什么?

[等量关系是:师傅做的工作量 徒弟做的工作量=1)

[先要求出师傅与徒弟各完成的工作量是多少?]

两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x 1)天,根据等量关系列方程。解方程得x=2

师傅完成的工作量为=,徒弟完成的工作量为=

所以他们两人完成的工作量相同,因此每人各得225元。

三、巩固练习

一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现

由甲独做10小时;

请你提出问题,并加以解答。

例如(1)剩下的乙独做要几小时完成?

(2)剩下的由甲、乙合作,还需多少小时完成?

(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

四、小结

1.本节课主要分析了工作问题中工作量、工作效率和工作时间之

间的关系,即工作量=工作效率×工作时间

工作效率=工作时间=

2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

五、作业

教科书习题6.3.3第1、2题。

读书破万卷下笔如有神,以上就是差异网为大家带来的7篇《三角形三边的关系数学教学设计》,能够给予您一定的参考与启发,是差异网的价值所在。

311 69464
网站地图