圆的数学小论文【精选10篇】-尊龙凯时最新z6com
数学无处不在,你在生活中发现关于圆的什么事情呢?你会怎么写小论文呢?它山之石可以攻玉,以下内容是差异网为您带来的10篇《圆的数学小论文》,可以帮助到您,就是差异网小编最大的乐趣哦。
关于圆的数学小论文 篇一
“叮铃铃!”“叮铃铃!”随着两声下课铃,放学的时间终于到了,我小跑回家,看到妈妈已经做好了热腾腾的饭菜,与以往不同的是,今天是用饭方形的盘子装菜的。
我开始夹菜,奇怪的是,今天的菜几筷子就夹完了,而平时用圆盘子装菜时经常一顿都吃不完的呀?莫非方形盘子和圆形盘子能装的菜的数量不同吗?我决定通过实验来找到答案。
我找到了两根同样长铁丝,分别围成了一个圆形和长方形,在里面都铺满了米粒,然后又用一个小型秤称了称放在圆形里的米粒和方形里的米粒的重量。终于,真相出现了:圆形里的米粒要比方形里的重很多。米粒重一点就代表米粒多一些,可圆形里面的米粒为什么会多一些呢?肯定是因为圆形的面积大,能装下的米粒也就肯定多,于是,我得出结论:在同等周长的情况下,圆形的面积是最大的。
按照这样的说法来说,把房子盖成圆形一定是最省材料的,可现在大街上形形色色的房子,几乎都是有一个个棱角的,这是为什么呢?我又想起刚才实验时用铁丝摆圆形的时候,费了九牛二虎之力,才摆出一个歪歪扭扭的圆。我的恍然大悟:圆形一定是非常难造的,几乎谁也造不出一个完美的圆。再说了,如果房子是圆形的,那房子里面的各种东西都是方方正正的,摆放上去会浪费许多空间,还不如方形呢!
通过今天的实验我懂得了:在摆放一些较小的东西,如饭菜,大米等的时候可以用圆形的东西来装,而在建造房子的时候却最好不要这样,否则会产生许多的麻烦。没想到,这样一个小小的圆都有这么大的奥秘,只要我们在生活中多多观察,多多思考,便一定能发现更多有趣的奥秘。
数学中考圆的知识点 篇二
1、圆心:圆中心一点叫做圆心。用字母“o”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。
2、圆心确定圆的位置,半径确定圆的大小。
3、在同一个圆内,所有的半径都相等,所有的直径都相等。
在同一个圆内,有无数条半径,有无数条直径。
在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r r=2(1)d
4、圆的周长:围成圆的曲线的长度叫做圆的周长。
5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
6、圆的周长公式:c=πd或c=2πr
7、圆的面积:圆所占平面的大小叫圆的面积。
8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=πr×r=πr2
9、圆的面积公式:s=πr2或者s=π(d÷2)2或者s=π(c÷π÷2)2
10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是π:4。在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2。
11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
12、一个环形,外圆的半径是r,内圆的半径是r,它的面积是s=πr2-πr2或s=π(r2-r2)。(其中r=r 环的宽度。)
13、环形的周长=外圆周长 内圆周长
14、半圆的周长等于圆的周长的一半加直径。半圆周长公式:c=πd÷2 d或c=πr 2r
15、半圆面积=圆面积÷2公式为:s=πr2÷2
16、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
17、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
18、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
19、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。
20、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。
22、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
23、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。
24、直径所在的直线是圆的对称轴。
今天的内容就介绍到这里了。
数学中考圆的知识点 篇三
一、圆
1、圆的有关性质
在一个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫圆,固定的端点o叫圆心,线段oa叫半径。
由圆的意义可知:
圆上各点到定点(圆心o)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
1、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理:不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
数学中考圆的知识点 篇四
1、圆中心的一点叫圆心,用o表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。
两端都在圆上,并过圆心的线段叫直径,用d表示。
2、圆有无数条半径,有无数条直径。
3、圆心决定圆的位置,半径决定圆的大小。
4、把圆对折,再对折就能找到圆心。
5、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
6、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
圆的周长
8、圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.
9.c=d或c=r. 半圆的周长
10、 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
7=21.98 8=25.12 9=28.26 10=31.4
圆的面积
11、用s表示圆的面积, r表示圆的半径,那么s=r^2 s环=(r^2-r^2)
12、 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
17^2=289 18^2=324 19^2=361 20^2=400
13、周长相等时,圆的面积最大。面积相等时,圆的周长最小。
面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长相同时,圆面积最大,正方形居中,长方形面积最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
第四单元:比的认识
15、两个数相除,又叫做这两个数的比。比的后项不能为0.
16、比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画x轴,而x轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。
列数与行数必须是具体的数,而不能用字母如(x,5)表示,它表述一条横线,(5,y)它表示一条竖线,都不能确定一个点。
二、分数乘法
分数乘法意义:
1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
分数的化简:分子、分母同时除以它们的最大公因数。
关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
倒数的意义:乘积为1的两个数互为倒数。
特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
求倒数的方法:
1、求分数的倒数是交换分子分母的位置。
2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
1的倒数是它本身。因为1*1=1
0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)
三、分数除法
分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。
除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
分数除法的基本性质:强调0除外
比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。
化简比:
1、用比的前项和后项同时除以它们的最大公约数。
2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
3、两个小数的比,向右移动小数点的位置。也是先化成整数比。
比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
常用来做判断的:
一个数除以小于1的数,商大于被除数。
一个数除以1,商等于被除数。
一个数除以大于1的数,商小于被除数。
五、百分数
百分数的约分:百分数化成分数,写成分数形式,再约分。
分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。
百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
六、统计
条形统计图可以知道每个数量的多少。
折现统计图可以知数量的增减,
扇形统计图可以知道部分和总量的关系。
数学中考圆的知识点 篇五
一、圆的相关概念
1、圆的定义
在一个个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫做圆,固定的端点o叫做圆心,线段oa叫做半径。
2、直线圆的与置位关系
1、线直与圆有唯公一共时,点做直叫与圆线切
2、三角的外形圆接的圆叫做三心形角外心
3、弦切角于所等夹弧所对的的圆心角
4、三角的内形圆切的圆叫做三心形角内心
5、垂于直径半直线必为圆的的切线
6、过径半外的点并且垂直端于半的径直线是圆切线
7、垂于直径半直线是圆的的切线
8、圆切线垂的直过切于点半径
3、圆的几何表示
以点o为圆心的圆记作“⊙o”,读作“圆o”
二、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:
过圆心
垂直于弦
直径平分弦知二推三
平分弦所对的优弧
平分弦所对的劣弧
三、弦、弧等与圆有关的定义
1、弦
连接圆上任意两点的线段叫做弦。(如图中的ab)
2、直径
经过圆心的弦叫做直径。(如途中的cd)
直径等于半径的2倍。
3、半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
4、弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以a,b为端点的弧记作“”,读作“圆弧ab”或“弧ab”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的'弧叫做劣弧(多用两个字母表示)
四、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
七、点和圆的位置关系
设⊙o的半径是r,点p到圆心o的距离为d,则有:
d
d=r点p在⊙o上;
d>r点p在⊙o外。
八、过三点的圆
1、过三点的圆
不在同一直线上的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
九、反证法
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
十、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙o的半径为r,圆心o到直线l的距离为d,那么:
直线l与⊙o相交d
直线l与⊙o相切d=r;
直线l与⊙o相离d>r;
十一、切线的判定和性质
1、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理
圆的切线垂直于经过切点的半径。
十二、切线长定理
1、切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
十三、圆和圆的位置关系
1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距
两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定
设两圆的半径分别为r和r,圆心距为d,那么
两圆外离d>r r
两圆外切d=r r
两圆相交r-r
两圆内切d=r-r(r>r)
两圆内含dr)
4、两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
十四、三角形的内切圆
1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十五、与正多边形有关的概念
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
十六、正多边形和圆
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十七、正多边形的对称性
1、正多边形的轴对称性
正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。
十八、弧长和扇形面积
1、弧长公式
n°的圆心角所对的弧长l的计算公式为
2、扇形面积公式
其中n是扇形的圆心角度数,r是扇形的半径,l是扇形的弧长。
3、圆锥的侧面积
其中l是圆锥的母线长,r是圆锥的地面半径。
初中数学圆解题技巧
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
阅读题以及答案 篇六
15、文中说“圆最能象征世界所蕴含的密码”,联系全文,概括“圆”蕴含哪些丰富的密码。 (6分)
自然世界是无法穷尽的;知识、真理是不断发展的;人的思想、精神是不断提升的(人生是不断进化、不断超越的)。(每点2分)
16、请简要分析文章第二段的论述层次。(6分)
先提出论点——“世上任何事物都不会是永恒不变的”;接着从理论上阐述这么说的原因;然后进一步举例论证观点。(每点2分)
17、文中说“人生是一个自我进化的圆”,联系全文,请说说怎样才能使人生不断进化?(6 分)
要有强大的心灵力量,敏捷的心灵反应;要有冲破旧有力量禁锢、拥抱新观念的勇气;要有永不满足、不懈追求的激情。(每点2分)
数学中考圆的知识点 篇七
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合;
圆的外部:可以看作是到定点的距离大于定长的点的集合;
圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;
2、到线段两端点距离相等的点的轨迹是:线段的中垂线;
3、到角两边距离相等的点的轨迹是:角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线
相信上面对圆的知识点总结内容学习,同学们对上面的内容已经能很好的掌握了吧,希望同学们会在考试中取得很好的成绩。
数学中考圆的知识点 篇八
圆的知识:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:
(1)如定义(1)中,该定点为圆心
(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母o表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一。d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母c表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。πr,用字母s表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
参考答案 篇九
1、 这个圆的直径4厘米,半径2厘米,面积12.56平方厘米
2、 这块草坪的面积是706.5平方米;要摆60盆花(周长94.2米)
3、 这个扇形面积是3平方厘米
4、 前轮周长1.8米
5、 这条小路面积是75.36平方米
6、 水泥路面的面积是640.56平方米
7、 圆环的宽度是5厘米
8、 这根分针尖端所走过的路程是94.2厘米(分针走一圈是60分钟,45分钟所走的路程为钟面圆周长的四分之三)
9、 时针尖端走一天扫过的长度是3.77米,扫过的面积是0.56平方米
解答应用题的一般步骤 篇十
(一)认真读题,分析题的类型。
(二)一定要准确地记清量与量之间的关系,不能乱搞它们之间的关系。
(三)根据该类型题的关系式,然后从问题入手,分析要解答此应用题的必要重要条件是什么?是已知还是未知?还可判断最后一步用什么方法计算;也可从已知条件入手分析条件之间的关系及所得结果。
(四)一般情况下,求总量根据该题的基本式用算术方法解答比较简便;求分量根据该题基本关系式列方程解答比较简便。
以上就是差异网为大家整理的10篇《圆的数学小论文》,希望对您的写作有所帮助。