高中数学知识点总结优秀10篇-尊龙凯时最新z6com
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,因此,让我们写一份总结吧。你所见过的总结应该是什么样的?它山之石可以攻玉,下面差异网为您精心整理了10篇《高中数学知识点总结》,希望可以启发、帮助到大朋友、小朋友们。
高中数学重点知识点总结 篇一
一、知识集装箱:
a、知识分类,打包进箱。
集装箱的发明给运输业带来巨大的变革,分类运输、到地儿分配让运输任务完成的更高效、便捷。其实不仅是数学,其他学科也可以学习集中箱完成任务的聪明方法。以数学为例,首先,我们先把高中数学分成几个大的版块(也可以理解成分成极大类。所以,我常常说,整理知识点,无非就是分类、分辨和分析。只有分类清楚,我们才名分辨识别类别之间的差异,接下来才能分析知识点,用知识点解决问题。如果大家在分的问题上没有下足功夫,那么,在解决问题的时候,就会遇到捉襟见肘的尴尬。.。.。.),高中数学的知识并不是很多,全部加在一起,几个集装箱就够了。细数一下,不过就八九个集装箱。
如:1、函数(函数,导函数)
2、几何(立体几何、平面解析几何)
3、三角(三角函数、三角恒等变换、解三角形)
4、数列
5、不等式
6、向量
7、较易知识(算法、统计、概率)
8、选讲小知识(几何证明选讲、参数方程、极坐标等)
理科生比文科生多一个箱
9、排列与组合
同学们把全部知识点分类之后,有一个最大的好处,就是可以站在学科的角度上来认识具体的知识点,更容易整合知识,也容易形成体系脉络,关键是,在面对综合性的题目时,完全可以用数学思维来理解和应对。这一点,是和大家平时死扣知识点、大量刷题不一样的。什么叫站在全局的角度审视问题?就是我们不局限自己的思考,这样,我们不会犯片面和主观的错误。
我认为,把知识点分类放进集装箱环节,是复习中的最关键部分,也是掌握这个学科的基础环节。但是有一点同学们切记,在分类的时候,不要流于形式,按照目录章节,把知识分成几块写在本子上就算完成任务。有些同学看到我的建议后,马上就会拿出市场上的那些教辅资料,直接按照上面的分类去背公式,然后对应做题。这就不是分类了。你们要理解我的意思,我是让大家把高中的知识点经过回忆之后,自己分出类别。然后对应课本,再细分明确。怎样才算完成集装箱环节?就是你既能把知识分成类,又能找到它们之间的差别,同时还能找到它们的联系和共性。我认为,这样,才算是你,把学科知识集装箱化了。接下来,你才可以用到他们。否则,都比较作集装箱化。
b、 做任务计划。
第一步,大家把知识分类后装进了集装箱。第二步,我们要将每个集装箱的任务运输到目的地,也就是,输送到我们的大脑。输入和输出等于学习和考试。我们在学习的阶段,是要把大量的知识输送到我们的头脑里;当我们考试的时候,我们经过对问题的分析判断之后,再将脑中的知识输出来解决具体问题。
我们已经成功的将知识分类并装进集装箱了,接下来,就是如何将集装箱运输到我们的脑中。当我们看清楚整个学科的全貌之后,我们就要分块的去掌握每个集装箱内的具体内容。集中运走集装箱不现实,因为我们没有足够的时间与精力。那么,我们就要根据实际情况,做一个可行性的计划。任务不能太大,也不能太空。类似一天背多少课文之类的计划就不要做了,这个就属于无效计划。我们要做的计划应该是从任务逆推出来的。比如:
9个版块做计划,每个版块按难易、内容不同做计划,建议共用45小时,(每天用3个小时学习数学)写出来。目标、计划清晰。
这样,我们运输集装箱的任务就可控了。
c、 时间控制
其实做计划不难,难在执行计划。一般一个成功的计划有两点:第一,目标量化。第二,时间可控。要想让时间可控,必须将一个大的任务化解成几个小的任务。为了让我们学完小任务后,理解起来不零散,我们必须本着分类、分辨、分析的三分原则进行。也就说,我们始终把握一点,发现知识之间的内在联系。只有这样,我们才能够把一个小任务,汇聚成一个大任务,几个大任务,凝聚成一个学科。这一点,也很类似我们推导公式,无论正推还是反推,都能够让我们找到最终的结果。
比如,我们把数学分成几个集装箱,集装箱又分成具体的几个小包装。每个版块再细分,细分到每个知识点用的时间。
那么剩下的关键问题就是,我们要为这些小包装的运输计算好时间。每天可以不在指定的时间内学习(在指定时间内学习容易养成强迫症
快速掌握高中数学知识点的窍门),时间上可以灵活安排,但是,在具体的花费时间上,必须要强制要求自己不能少于多长时间。另外,永远都提醒自己,我们不是要在每个知识类上花费多长时间,而是,我们是否掌握了他们,是否把这些集装箱运进了我们的大脑。
二、在每类知识里,发现规律,总结出小标题
其实我们掌握一个知识,最终的目的是了管理知识、应用知识。举个例子。你所在的高中分成了三个年级,每个年级又分成了不同班级,每个班级又分成了男生女生,而男生女生又分成不同的同桌。.。.。为什么要这样去分?因为这样分类便于管理。管理的目的不是划分类别,而是让一个大的教学任务更好的执行到终端,也就是每名学生。每名同学都有自己的升学任务,如果为每名学生提供一对一的服务肯定无法在规定时间内完成。所以,要逐项的形成不同的任务体系。具体到数学学科上,发现规律、总结小标题就变成了这样,例如:
学习函数,我们总结后发现,函数有函数3要素、函数3性质、函数解析3方法,初等函数3模型。原来他们这么整理的存在3特点。那好了,通过对比发现,他们都存在3个特征,那么我们就对函数有了快速了解,马上了然于胸。对每一版块,都总结数字,333或444等,轻松记忆,方便理解。
三、发现解题规律、形成解题思维步骤
不搞题海战,重质不重量,每个知识点不超过3道例题,在做题的过程中,有2件事要做:
a、想想出题者为什么这么出?他的题触及了哪些知识点?我用正向思维和逆向思维如何更快?
b、这道题如果我作为老师,怎样讲能让听者清楚明白?讲解一道难题,讲的人收获最大!可以随时和你的小伙伴分享!
四、及时鼓励自己
不用时时想着高考,在我们每完成我们定下的计划的一小部分,就是我们成长进步的的一步,体会数学带来的理性思维、客观之美
五、保持持续的激情
高考是人生中一次美好的经历,在学习的过程中,一定要有激情,对自己所做的事情,激情热爱、热诚投入,不仅事半功倍,而且给我们带来满足与成就感。
高中数学知识点总结 篇二
一、求导数的方法
(1)基本求导公式
(2)导数的四则运算
(3)复合函数的导数
设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即xx
二、关于极限
1、数列的极限:
粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于a,这就是数列极限的描述性定义。记作:=a。如:
2、函数的极限:
当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作
三、导数的概念
1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,
即k=,相应的切线方程是xx
注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()a—1b—2c1d
四、导数的综合运用
(一)曲线的切线
函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:
(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=xx
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
高中数学知识点总结 篇三
(一)导数第一定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义
(二)导数第二定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即 导数第二定义
(三)导函数与导数
如果函数 y = f(x) 在开区间 i 内每一点都可导,就称函数f(x)在区间 i 内可导。这时函数 y = f(x) 对于区间 i 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。
(四)单调性及其应用
1、利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2、用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间
学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。
高中数学知识点总结 篇四
等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
1:等比数列通项公式:an=a1xq^(n-1);推广式:an=am·q^(n-m);
2:等比数列求和公式:等比求和:sn=a1 a2 a3 。.。.。.。 an
①当q≠1时,sn=a1(1-q^n)/(1-q)或sn=(a1-an×q)÷(1-q)
②当q=1时,sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n 1=(an 1)2n 1
3:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
4:性质:
①若m、n、p、q∈n,且m n=p q,则am·an=apxaq;
②在等比数列中,依次每k项之和仍成等比数列。
例题:设ak,al,am,an是等比数列中的第k、l、m、n项,若k l=m n,求证:akxal=amxan
证明:设等比数列的首项为a1,公比为q,则ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)
所以:akxal=a^2xq^(k l-2),amxan=a^2xq(m n-2),故:akxal=amxan
说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:a(1 k)·a(n-k)=a1·an
对于等差数列,同样有:在等差数列中,距离两端等这的两项之和等于首末两项之和。即:a(1 k) a(n-k)=a1 an
相关内容】: 篇五
数学归纳法的基本步骤
一般地,证明一个与自然数n有关的命题p(n),有如下步骤:
(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;
(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k 1时命题也成立。
综合(1)(2),对一切自然数n(≥n0),命题p(n)都成立。
第二数学归纳法
数学归纳法的基本步骤:
对于某个与自然数有关的命题p(n),
(1)验证n=n0时p(n)成立;
(2)假设n0≤n
综合(1)(2),对一切自然数n(≥n0),命题p(n)都成立。
倒推归纳法(反向归纳法)
(1)验证对于无穷多个自然数n命题p(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k,k≥1);
(2)假设p(k 1)(k≥n0)成立,并在此基础上,推出p(k)成立,
综合(1)(2),对一切自然数n(≥n0),命题p(n)都成立;
螺旋式归纳法
对两个与自然数有关的命题p(n),q(n),
(1)验证n=n0时p(n)成立;
(2)假设p(k)(k>n0)成立,能推出q(k)成立,假设 q(k)成立,能推出 p(k 1)成立;综合(1)(2),对一切自然数n(≥n0),p(n),q(n)都成立。
数学归纳法:数学上证明与自然数n有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
高中数学知识点总结 篇六
一、集合、简易逻辑
1、集合;
2、子集;
3、补集;
4、交集;
5、并集;
6、逻辑连结词;
7、四种命题;
8、充要条件。 www.chay chayi5.com i5.com
二、函数
1、映射;
2、函数;
3、函数的单调性;
4、反函数;
5、互为反函数的函数图象间的关系;
6、指数概念的扩充;
7、有理指数幂的运算;
8、指数函数;
9、对数;
10、对数的运算性质;
11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)
1、数列;
2、等差数列及其通项公式;
3、等差数列前n项和公式;
4、等比数列及其通顶公式;
5、等比数列前n项和公式。
四、三角函数
1、角的概念的推广;
2、弧度制;
3、任意角的三角函数;
4、单位圆中的三角函数线;
5、同角三角函数的基本关系式;
6、正弦、余弦的诱导公式;
7、两角和与差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函数、余弦函数的图象和性质;
10、周期函数;
11、函数的奇偶性;
12、函数的图象;
13、正切函数的图象和性质;
14、已知三角函数值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法举例。
五、平面向量
1、向量;
2、向量的加法与减法;
3、实数与向量的积;
4、平面向量的坐标表示;
5、线段的定比分点;
6、平面向量的数量积;
7、平面两点间的距离;
8、平移。
六、不等式
1、不等式;
2、不等式的基本性质;
3、不等式的证明;
4、不等式的解法;
5、含绝对值的不等式。
七、直线和圆的方程
1、直线的倾斜角和斜率;
2、直线方程的点斜式和两点式;
3、直线方程的`一般式;
4、两条直线平行与垂直的条件;
5、两条直线的交角;
6、点到直线的距离;
7、用二元一次不等式表示平面区域;
8、简单线性规划问题;
9、曲线与方程的概念;
10、由已知条件列出曲线方程;
11、圆的标准方程和一般方程;
12、圆的参数方程。
八、圆锥曲线
1、椭圆及其标准方程;
2、椭圆的简单几何性质;
3、椭圆的参数方程;
4、双曲线及其标准方程;
5、双曲线的简单几何性质;
6、抛物线及其标准方程;
7、抛物线的简单几何性质。
九、直线、平面、简单何体
1、平面及基本性质;
2、平面图形直观图的画法;
3、平面直线;
4、直线和平面平行的判定与性质;
5、直线和平面垂直的判定与性质;
6、三垂线定理及其逆定理;
7、两个平面的位置关系;
8、空间向量及其加法、减法与数乘;
9、空间向量的坐标表示;
10、空间向量的数量积;
11、直线的方向向量;
12、异面直线所成的角;
13、异面直线的公垂线;
14、异面直线的距离;
15、直线和平面垂直的性质;
16、平面的法向量;
17、点到平面的距离;
18、直线和平面所成的角;
19、向量在平面内的射影;
20、平面与平面平行的性质;
21、平行平面间的距离;
22、二面角及其平面角;
23、两个平面垂直的判定和性质;
24、多面体;
25、棱柱;
26、棱锥;
27、正多面体;
28、球。
十、排列、组合、二项式定理
1、分类计数原理与分步计数原理;
2、排列;
3、排列数公式;
4、组合;
5、组合数公式;
6、组合数的两个性质;
7、二项式定理;
8、二项展开式的性质。
十一、概率
1、随机事件的概率;
2、等可能事件的概率;
3、互斥事件有一个发生的概率;
4、相互独立事件同时发生的概率;
5、独立重复试验。
必修一函数重点知识整理
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(—x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像c1与c2的对称性,即证明c1上任意点关于对称中心(对称轴)的对称点仍在c2上,反之亦然;
(3)曲线c1:f(x,y)=0,关于y=x a(y=—x a)的对称曲线c2的方程为f(y—a,x a)=0(或f(—y a,—x a)=0);
(4)曲线c1:f(x,y)=0关于点(a,b)的对称曲线c2方程为:f(2a—x,2b—y)=0;
(5)若函数y=f(x)对x∈r时,f(a x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈r时,f(x a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈r时,f(x a)=—f(x)(或f(x a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈d(d为f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈r );
(2)l og a n=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符号由口诀“同正异负”记忆;
(4)a log a n= n(a>0,a≠1,n>0);
8、判断对应是否为映射时,抓住两点:
(1)a中元素必须都有象且唯一;
(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为a,值域为b,则有f[f——1(x)]=x(x∈b),f——1[f(x)]=x(x∈a)。
11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13、恒成立问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解。
拓展阅读:高中数学复习方法
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
高中数学知识点总结 篇七
高考数学导数知识点
(一)导数第一定义
设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0 △x也在该邻域内)时,相应地函数取得增量△y = f(x0 △x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第一定义
(二)导数第二定义
设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x — x0也在该邻域内)时,相应地函数变化△y = f(x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第二定义
(三)导函数与导数
如果函数y = f(x)在开区间i内每一点都可导,就称函数f(x)在区间i内可导。这时函数y = f(x)对于区间i内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。
(四)单调性及其应用
1。利用导数研究多项式函数单调性的一般步骤
(1)求f¢(x)
(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2。用导数求多项式函数单调区间的一般步骤
(1)求f¢(x)
(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间
高中数学重难点知识点
高中数学包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22———27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15———20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17———22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高中数学知识点大全
一、集合与简易逻辑
1、集合的元素具有确定性、无序性和互异性。
2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集。
3、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。
4、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。
5、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”。
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。反证法分为三步:假设、推矛、得果。
6、充要条件
二、函数
1、指数式、对数式,
2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”。
(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个。
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像。
3、单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。
(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”。
复合函数的奇偶性特点是:“内偶则偶,内奇同外”。复合函数要考虑定义域的变化。(即复合有意义)
4、对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数与函数的图像关于直线(轴)对称。
推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称。
推广二:函数,的图像关于直线对称。
(2)函数与函数的图像关于直线(轴)对称。
(3)函数与函数的图像关于坐标原点中心对称。
三、数列
1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系
2、等差数列中
(1)等差数列公差的取值与等差数列的单调性。
(2)也成等差数列。
(3)两等差数列对应项和(差)组成的新数列仍成等差数列。
(4)仍成等差数列。
(5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;
(6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和—偶数项和”=此数列的中项。
(7)两数的等差中项惟一存在。在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解。
(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式)。
3、等比数列中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的`单调性。
(2)两等比数列对应项积(商)组成的新数列仍成等比数列。
(3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;
(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和。
(5)并非任何两数总有等比中项。仅当实数同号时,实数存在等比中项。对同号两实数的等比中项不仅存在,而且有一对。也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解。
(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式)。
4、等差数列与等比数列的联系
(1)如果数列成等差数列,那么数列(总有意义)必成等比数列。
(2)如果数列成等比数列,那么数列必成等差数列。
(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件。
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数。
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列。
5、数列求和的常用方法:
(1)公式法:①等差数列求和公式(三种形式),
②等比数列求和公式(三种形式),
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法)。
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一)。
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和
(6)通项转换法。
四、三角函数
1、终边与终边相同(的终边在终边所在射线上)。
终边与终边共线(的终边在终边所在直线上)。
终边与终边关于轴对称
终边与终边关于轴对称
终边与终边关于原点对称
一般地:终边与终边关于角的终边对称。
与的终边关系由“两等分各象限、一二三四”确定。
2、弧长公式:,扇形面积公式:1弧度(1rad)。
3、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正。
4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”。务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角
5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6、三角函数诱导公式的本质是:奇变偶不变,符号看象限。
7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。
8、三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变。既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定。如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:
(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。
9、三角形中的三角函数:
(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余。锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。
(2)正弦定理:(r为三角形外接圆的半径)。
(3)余弦定理:常选用余弦定理鉴定三角形的类型。
五、向量
1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征。
2、几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是)。
3、两非零向量平行(共线)的充要条件
4、平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1 e2。
5、三点共线;
6、向量的数量积:
六、不等式
1、(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。
(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);
(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论。注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集。
2、利用重要不等式以及变式等求函数的最值时,务必注意a,b(或a,b非负),且“等号成立”时的条件是积ab或和a b其中之一应是定值(一正二定三等四同时)。
3、常用不等式有:(根据目标不等式左右的运算结构选用)
a、b、c r,(当且仅当时,取等号)
4、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法
5、含绝对值不等式的性质:
6、不等式的恒成立,能成立,恰成立等问题
(1)恒成立问题
若不等式在区间上恒成立,则等价于在区间上
若不等式在区间上恒成立,则等价于在区间上
(2)能成立问题
(3)恰成立问题
若不等式在区间上恰成立,则等价于不等式的解集为。
若不等式在区间上恰成立,则等价于不等式的解集为,
七、直线和圆
1、直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量))。应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为。
(2)直线在坐标轴上的截距可正、可负、也可为0。直线两截距相等直线的斜率为—1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合。
3、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
4、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解。
5、圆的方程:最简方程;标准方程;
6、解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆上一点圆的切线方程
过圆上一点圆的切线方程
过圆上一点圆的切线方程
如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程。
如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离)。
7、曲线与的交点坐标方程组的解;
过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程。
八、圆锥曲线
1、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用。
(1)注意:①圆锥曲线第一定义与配方法的综合运用;
②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的正数,抛物线点点距除以点线距商是等于1。
2、圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势。其中,椭圆中、双曲线中。
重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点。
3、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解。特别是:
①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”。
②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理。
③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化。
4、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点。
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响。
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等。
九、直线、平面、简单多面体
1、计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
2、计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解。注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线。
3、空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用。注意:书写证明过程需规范。
4、直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质。
如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),
如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心。
5、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等。注意:补形:三棱锥三棱柱平行六面体
6、多面体是由若干个多边形围成的几何体。棱柱和棱锥是特殊的多面体。
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体。
7、球体积公式。球表面积公式,是两个关于球的几何度量公式。它们都是球半径及的函数。
十、导数
1、导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,c为常数)
2、多项式函数的导数与函数的单调性
在一个区间上(个别点取等号)在此区间上为增函数。
在一个区间上(个别点取等号)在此区间上为减函数。
3、导数与极值、导数与最值:
(1)函数处有且“左正右负”在处取极大值;
函数在处有且左负右正”在处取极小值。
注意:①在处有是函数在处取极值的必要非充分条件。
②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值。特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。
③单调性与最值(极值)的研究要注意列表!
(2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”
函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;
注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。
高中数学知识点总结 篇八
一、高中数列基本公式:
1、一般数列的通项an与前n项和sn的关系:an=
2、等差数列的通项公式:an=a1 (n-1)d an=ak (n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:sn=
sn=
sn=
当d≠0时,sn是关于n的二次式且常数项为0;当d=0时(a1≠0),sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,sn=n a1 (是关于n的正比例式);
当q≠1时,sn=
sn=
二、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m- s3m、……仍为等差数列。
2、等差数列{an}中,若m n=p q,则
3、等比数列{an}中,若m n=p q,则
4、等比数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m- s3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a d;四个数成等差的设法:a-3d,a-d,a d,a 3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
高一数学知识点总结归纳 篇九
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
上面给出了k分别为正和负(2和-2)时的函数图像。
当k>0时,反比例函数图像经过一,三象限,是减函数
当k<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
高考数学易错的知识点总结 篇十
求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
函数零点定理使用不当致误
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的。导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1 (n-1)d,前n项和公式sn=na1 n(n-1)d/2=(a1 an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
an,sn关系不清致误
错因分析:在数列问题中,数列的通项an与其前n项和sn之间存在关系:这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。当题目中给出了数列{an}的an与sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出sn,知道了sn可以求出an,解题时要注意体会这种转换的相互性。
对等差、等比数列的性质理解错误
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般地,有结论“若数列{an}的前n项和sn=an2 bn c(a,b,c∈r),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,sm,s2m-sm,s3m-s2m(m∈n_)是等差数列。解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。
遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合b高三经典纠错笔记:数学a,就有b=a,φ≠b高三经典纠错笔记:数学a,b≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 b≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
四种命题的结构不明致误
错因分析:如果原命题是“若 a则b”,则这个命题的逆命题是“若b则a”,否命题是“若┐a则┐b”,逆否命题是“若┐b则┐a”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
充分必要条件颠倒致误
错因分析:对于两个条件a,b,如果a=>b成立,则a是b的充分条件,b是a的必要条件;如果b=>a成立,则a是b的必要条件,b是a的充分条件;如果a<=>b,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
逻辑联结词理解不准致误
错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,命题p∨q假<=>p假且q假(概括为一真即真);命题p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。
求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
以上就是差异网为大家带来的10篇《高中数学知识点总结》,希望可以对您的写作有一定的参考作用。