小学数学五年级下册数学知识点梳理(通用7篇)-尊龙凯时最新z6com
很多小学生到了五年级都觉得数学很难,找不到有效的学习方法。其实做数学试题也能学好数学。这次帅气的小编为您整理了7篇《小学数学五年级下册数学知识点梳理》,在大家参考的同时,也可以分享一下差异网给您的好友哦。
小学数学五年级下册数学知识点梳理 篇一
同学们要想在考试中取得好成绩就必须注重平时的练习与积累,应届毕业生考试网小编为大家整理了小学数学五年级下册数学知识点,小朋友们一定要仔细阅读哦!
一、图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
二、因数与倍数
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
三、长方体和正方体
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长 宽 高)×4正方体的棱长总和=棱长×12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽 长×高 宽×高)×2s=(ab ah bh)×2
正方体的表面积=棱长×棱长×6用字母表示:s=
6、表面积单位:平方厘米、平方分米、平方米相邻单位的'进率为100
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长×宽×高用字母表示:v=abh长=体积÷(宽×高) 宽=体积÷(长×高)
高=体积÷(长×宽)
正方体的体积=棱长×棱长×棱长用字母表示:v= a×a×a
9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为1000
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 v=sh
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;
把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。
13、容积单位:升和毫升(l和ml) 1l=1000ml 1l=1000立方厘米1ml=1立方厘米
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
四、分数的意义和性质
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
五、分数的加法和减法
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
六、打电话
1、逐个法:所需时间最多;
2、分组法:相对节约时间;
3、同时进行法:最节约时间。
1、因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。不能单独说谁是倍数或因数
2、求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的
3、求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……
4、一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的。
5、一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的。
6、个位上是 0,2,4,6,8的数,都是2的倍数,也是偶数。
7、自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。
8、个位上是0或者5的数,都是5的倍数。
9、个位是0的数,既是2的倍数,又是5的倍数。
10、一个数各位上的和是3的倍数,这个数就是3的倍数。
11、只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。1既不是质数,也不是合数。
12、整数按因数的个数来分类:1,质数,合数。整数按是否是2的倍数来分类:奇数,偶数
13、将合数分解成几个质数相乘的形式就叫做分解质因数。分解质因数用短除法,把36分解质因数是?
14、最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是120
15、奇数加奇数等于偶数。奇数加偶数等于奇数。偶数加偶数等于偶数。
16.a是c的倍数,b是c的倍数,那么a b的和是c的倍数,c是a b和的因数,a-b的差是c的倍数,c是a-b差的因数。
17、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
18、轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴
19、长方体有6个面。每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同)。
20、长方体有12条棱,分为三组,相对的4条棱长度相等。
21、长方体有8个顶点。
22、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高
23、正方体有6个面, 6个面都是正方形 ,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点
24、长方体棱长之和:(长 宽 高)×4长×4 宽×4 高×4
25、正方体棱长之和:棱长×12
26、长方体(正方体)6个面的总面积,叫做它的表面积。
27、长方体表面积=(长×宽 宽×高 长×高)×2 或长方体表面积=长×宽×2 宽×高×2 长×高×2
28、正方体表面积=棱长×棱长×6
29、计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m3
30、棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m3
31、长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×aa3表示3个a相乘
32、相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立〈www.chayi5.com〉方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升
33、一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。
34、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”平均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。
35、米表示
(1)把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)
(2)把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米
36、当整数除法得不到整数的商时,可以用分数表示除法的商。在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线。(除数不能为0)区别:分数是一种数,除法是一种运算
37、分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。
38、带分数包括整数部分和分数部分。假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变。带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变。
39.a是b的几分之几?用a÷b
40、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
41、几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数。
42、如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。
43、分子和分母只有公因数1的分数叫做最简分数。把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。
44、几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。
45、把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。
46、求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数。
47、如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数。
48、如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积。
49、两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数。
50、分数化成小数:用分子除以分母化成小数。小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数。
数学五年级下册知识点 篇二
一、图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
二、因数与倍数
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
如何能轻松学好数学
学好小学数学认真听课很重要
小学学生想要学好数学,在课上一定要认真听老师讲课。老师在课堂上讲的是非常重要的知识点,但是在小学数学课上选择做笔记并不是一个正确的做法。
在小学数学课上你需要做的就是跟住老师的思维,学好老师的思维方式,这个阶段要培养自己的数学逻辑思维能力。大部分的小学数学老师,对于这门学科都有自己的见解,所以跟住老师的思路久而久之就会逐渐转换成自己解题的思路。
小学生学习数学要会独立思考
小学是数学开窍的阶段,在解题上小学生一定要学会自己独立去思考。你需要做的就是不断的做题来培养自己的这一能力。而在积累到一定的数量之后,你的这种独立解题的能力是别人无法超越的。这个培养过程很简单也很短,只要你得到一点的成就感对于小学数学你就会充满自信。
其实,学好小学数学关键在于自己的真实能力,而不是形式。很多的小学生数学笔记一大堆,最后考试的成绩也就是那样。在学习上小学数学也好,其他科目也罢,不要讲究形式感,关键是要把一个个的问题和知识学透。不反对记笔记,但是不要一味的做笔记,听小学数学课是需要过脑子的。
数学整数减法知识点
(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
(3)加法和减法互为逆运算。
数学五年级下册知识点 篇三
一、图形的变换
图形变换的基本方式是平移、对称和旋转。
1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……
等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:
①对应点到对称轴的距离相等;
②对应点的连线与对称轴垂直;
③对称轴两边的图形大小、形状完全相同。
对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点o叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车
(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。
旋转的性质:
(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;
(2)其中对应点到旋转中心的距离相等;
(3)旋转前后图形的大小和形状没有改变;
(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;
(5)旋转中心是不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数
二、因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征
1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、自然数按能不能被2整除来分:奇数、偶数。
自奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。
然
数偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.
关系:奇数 、-偶数=奇数奇数 、-奇数=偶数偶数 、-偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1三类。
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数
6、、最小
a的最小因数是:1; a的因数是:a; a的最小倍数是:a;
最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4;
最小的自然数是:0;
7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数(一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)
8、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8
两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;
⑷2和所有奇数互质; ⑸质数与比它小的合数互质;
9、公因数、公因数
几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。
用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的公因数。
如果两数互质时,那么1就是它们的公因数。
10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
11、求公因数和最小公倍数方法
用12和16来举例
1、求法一:(列举求同法)
公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
公因数是:2×2=4 (相同乘)
最小公倍数是:2×2 × 3×2×2= 48 (相同乘×不同乘)
三长方体和正方体
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点
不同点
面
棱
长方体
都有6个面,
12条棱,
8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等
正方体
6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长 宽 高)×4=长×4 宽×4 高×4 l=(a b h)×4
长=棱长总和÷4-宽-高a=l÷4-b-h
宽=棱长总和÷4-长-高b=l÷4-a-h
高=棱长总和÷4-长-宽h=l÷4-a-b
正方体的棱长总和=棱长×12 l=a×12
正方体的棱长=棱长总和÷12 a=l÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽 长×高 宽×高)×2 s=2(ab ah bh)
无底(或无盖)长方体表面积=长×宽 (长×高 宽×高)×2
s=2(ab ah bh)-ab s=2(ah bh) ab
无底又无盖长方体表面积=(长×高 宽×高)×2 s=2(ah bh)贴墙纸
正方体的表面积=棱长×棱长×6 s=a×a×6用字母表示:s= 6a2
生活实际:
油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高v=abh
长=体积÷宽÷高a=v÷b÷h
宽=体积÷长÷高b=v÷a÷h
高=体积÷长÷宽h= v÷a÷b
正方体的体积=棱长×棱长×棱长
v=a×a×a= a3读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高用字母表示:v=s h
(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成l和ml。
1升=1立方分米1毫升=1立方厘米1升=1000毫升
(1 l = 1 dm3 1 ml = 1 cm3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
_状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:v物体=v现在-v原来
也可以v物体=s×(h现在- h原来)
v物体=s×h升高
8、【体积单位换算】
率
大单位转换成小单位
÷进率
小单位转换成大单位
进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
率
【单位换算】
大单位小单位
÷进率
小单位大单位
长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米
1米=10分米=100厘米=1000毫米(相邻单位进率10)
面积单位:1平方千米=100公顷1平方米=100平方分米
1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)
质量单位:1吨=1000千克1千克=1000克
人民币:1元=10角1角=10分1元=100分
四分数的意义和性质
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
4、分数与除法
a÷b=(b≠0,除数不能为0,分母也不能够为0)例如:4÷5=
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1
3、带分数:带分数由整数和真分数组成的分数。带分数>1.
4、真分数<1≤假分数真分数<1<带分数
6、假分数与整数、带分数的互化
(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:
=10÷5=2 =21÷5=4
(2)整数化为假分数,用整数乘以分母得分子如:
2= 2×4=8 (8作分子)
(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:
5= 5×5 1=26
(4)1等于任何分子和分母相同的分数。如:
1=====…==…
7、分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。如:
11、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……
如:0.3= 0.03= 0.003=
(2)分数化为小数:
方法一:把分数化为分母是10、100、1000……
如:=0.3 ==0.6 ==0.25
方法二:用分子÷分母
如:=3÷4=0.75
(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
如:2=2 0.3=2.3
12、比分数的大小:分母相同,分子大,分数就大;
分子相同,分母小,分数才大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
14、两个数互质的特殊判断方法:
① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
15、求公因数的方法:
①倍数关系:公因数就是较小数。
②互质关系:公因数就是1
③一般关系:从大到小看较小数的因数是否是较大数的因数。
16、分数知识图解:
分数的产生
分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份。
分数与除法:分子(被除数),分母(除数),分数值(商)。
真分数真分数小于1
真分数与假分数假分数假分数大于1或等于1
带分(整数部分和真分数)
假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)
分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,
分数的基本性质分数的大小不变。
通分、通分子:化成分母不同,大小不变的分数(通分)
公因数
约分求公因数
最简分数分子分母互质的分数(最简真分数、最简假分数)
约分及其方法
最小公倍数
通分求最小公倍数
分数比大小(通分、通分子、化成小数)
通分及其方法
小数化分数小数化成分母是10、100、1000的分数再化简
分数和小数的互化
分数化小数分子除以分母,除不尽的取近似值
五分数的加法和减法
(1)同分母分数加、减法(分母不变,分子相加减)
1、分数数的加法和减法(2)异分母分数加、减法(通分后再加减)
(3)分数加减混合运算:同整数。
(4)结果要是最简分数
2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
附:具体解释
(一)同分母分数加、减法
1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。
2、计算的结果,能约分的要约成最简分数。
(二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。
2、异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。
(三)分数加减混合运算
1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。
六统计与数学广角
众数一组数据中出现次数最多的数叫众数。
众数能够反映一组数据的集中情况。
统计在一组数据中,众数可能不止一个,也可能没有众数。
复式折线统计图
综合应用打电话的方案
1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。
众数能够反映一组数据的集中情况。
在一组数据中,众数可能不止一个,也可能没有众数。
2、中位数:(1)按大小排列;
(2)如果数据的个数是单数,那么最中间的那个数就是中位数;
(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
3、平均数的求法:总数÷总份数=平均数
4、一组数据的一般水平:
(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。
(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。
(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。
4、平均数、中位数和众数的联系与区别:
①平均数:
一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
容易受极端数据的影响,表示一组数据的平均情况。
②中位数:
将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
它不受极端数据的影响,表示一组数据的一般情况。
③众数:
在一组数据中出现次数最多的数叫做这组数据的众数。
它不受极端数据的影响,表示一组数据的集中情况。
5、统计图:我们学过——条形统计图、复式折线统计图。
条形统计图优点:条形统计图能形象地反映出数量的多少。
折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。
注:①画图时注意:一“点”(描点)、二“连”(连线)三“标”(标数据)。
②要用不同的线段分别连接两组数据中的数。
6、打电话:规律——人人不闲着,每人都在传。(技巧:已知人数依次× 2)
(1)逐个法:所需时间最多。
(2)分组法:相对节约时间。
(3)同时进行法:最节约时间。
七数学广角
用天平找次品规律:
1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。
2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次
4~9个物体,保证能找出次品需要测的次数是2次
10~27个物体,保证能找出次品需要测的次数是3次
28~81个物体,保证能找出次品需要测的次数是4次
82~243个物体,保证能找出次品需要测的次数是5次
244~729个物体,保证能找出次品需要测的次数是6次
3、找次品规律
1 2 3 4 5 …次数
3 3×3 3×3×3 3×3×3×3 3×3×3×3×3 …
3 9 27 81 243 …次品个数
五年级下册苏教版数学学习方法
养成良好的学习数学习惯
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
逐步形成“以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
五年级下册苏教版数学学习技巧
学会看题
高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。
有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。
课后巩固
很多学生在课后的学习过程中不注重巩固,只是觉得课堂上的一些知识就足够了,其实这是错误的。高中数学知识丰富,不像初中数学那么简单,却有着丰富的内涵。如果它不能进一步挖掘,那么它只是掌握这些知识的表面。因此,我不知道如何理解,也不能使用这些知识时,我做我的练习。
做练习是必要的,但有些学生只是做练习,而不是巩固这些知识,把知识扩展到做练习,经常是在练习完成后完成练习。这和中学问题没有什么区别。事实上,我们也应该把在这个练习中使用的知识联系起来,这样我们才能理解正在使用的知识,并且能够掌握更多的知识。也可以发现知识点是关键,也可以发现如何链接相关知识的难题。
数学五年级下册知识点 篇四
一、直接写出得数。
8-0.72=0.72×2.5×4=7.2÷0.8=
0.64÷1.6=8.7÷2.9×2.9=4.2÷0.1=
7.2 6.5 2.8=1.5×0.75 1.5×0.25=
二、用自己喜欢的方法计算下列各题。
12.7-(8.65 2.7)92.5×0.25×46.7×0.9 6.7×0.1
8.25×9.9 0.8253.4×8.7 34×0.136.5×1.1
三、笔算下列各题。
7.89×4.2728.56÷5.1102.6÷3.8
四、列式计算。
1、8.5与4.2的积比17.8的一半多多少?
2、26.34比3.4与4.6的积多多少?
数学五年级下册知识点 篇五
1、众数的意义:在一组数据中,出现次数最多的数,是这组数据的众数。
2、众数的特征:能够反映一组数据的集中情况。
3、复式折线统计图:在计量过程中存在两组数据,而又需要在一个统计图中表示这两组数据时,就要用两种不同形式的折线来表示不同数量变化情况的折线统计图。
4、 复式折线统计图的特点:能表示两组数据数量的多少,数量的增减变化情况,还能比较两组数据的变化趋势。
5、复式折线统计图的制作:(1)根据两组数据量多少和图纸大小,画出两条相互垂直的射线;(2)在水平射线上确定好各点的距离,分配各点的位置;(3)在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示的数量;(4)用不同的图例表示两组不同的数据;(5)按照数据大小描出各点,再用线段顺次连接;(6)标出题目,注明单位、日期。
数学五年级下册知识点 篇六
1、小数乘法的计算法则:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
2、计算中的发现:①一个数(0除外)乘小于1的数,积比原来的数小。如:3.7×0.2=0.74
②一个数(0除外)乘大于1的数,积比原来的数大。如:3.7×2=7.4
③一个数(0除外)乘于1,积和原来的数相等。如:3.5×1=3.5
3、小数乘法的验算方法:①把因数的位置交换,再乘一遍。(通用)②积÷一个因数=另一个因数。
4、小数四则运算顺序跟整数是一样的。(加、减法是第一级,乘、除法是第二级)
①一个算式里,如果含有同一级运算,要从左往右依次计算。
②一个算式里,如果含有两级运算,要先算第二级运算,后算第一级运算。(即是先×÷后 ?)
③一个算式里,如果有括号,先算括号里面的,后算括号外面的。
5、积的近似值:先求出积,根据要求用“四舍五入”法保留一定的小数位数。
6、运算定律和性质:
加法:加法交换律:a b=b a加法结合律:(a b) c=a (b c)
减法:减法性质:a-b-c=a-(b c)a-(b-c)=a-b c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a b)×c=a×c b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
上文是五年级数学下册知识点梳理,希望文章对您有所帮助!
目标预设 篇七
1、让学生在现实情境中认识负数,理解正负数及零的意义,并掌握正负数的读写方法。
2、使学生能用正负数描述生活中具有相反意义的量,培养学生应用数学知识解决实际问题的能力。
3、让学生体验数学与生活密切关联,激发对数学的学习兴趣,同时培养学生的爱国主义情感。
它山之石可以攻玉,以上就是差异网为大家整理的7篇《小学数学五年级下册数学知识点梳理》,希望对您的写作有所帮助。