高一年级必修五数学知识点整理【优秀5篇】-尊龙凯时最新z6com
所有的人都是凡人,但所有的人都不甘于平庸。我们一定要相信自己,只要艰苦努力,奋发进取,在绝望中也能寻找到希望,平凡的人生终将会发出耀眼的光芒。下面是小编精心为大家整理的5篇《高一年级必修五数学知识点整理》,希望能对您的写作有一定的参考作用。
高一年级数学必修五知识点 篇一
函数模型及其应用
本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:
(1)阅读并且理解题意。(关键是数据、字母的实际意义);
(2)设量建模;
(3)求解函数模型;
(4)简要回答实际问题。
常见考法:
本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。
误区提醒:
1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
高一数学必修五知识点整理 篇二
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:
a、直线与平面垂直时,所成的角为直角,
b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
高一数学必修五知识点整理 篇三
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;
2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:
(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;
(2)根据需要构造函数,利用函数的相关知识解决问题;
(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;
3.函数与方程是两个有 chayi5.com 差异网…着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。
高一数学必修五知识点梳理 篇四
概率性质与公式
(1)加法公式:p(a b)=p(a) p(b)-p(ab),特别地,如果a与b互不相容,则p(a b)=p(a) p(b);
(2)差:p(a-b)=p(a)-p(ab),特别地,如果b包含于a,则p(a-b)=p(a)-p(b);
(3)乘法公式:p(ab)=p(a)p(b|a)或p(ab)=p(a|b)p(b),特别地,如果a与b相互独立,则p(ab)=p(a)p(b);
(4)全概率公式:p(b)=∑p(ai)p(b|ai)。它是由因求果,
贝叶斯公式:p(aj|b)=p(aj)p(b|aj)/∑p(ai)p(b|ai)。它是由果索因;
如果一个事件b可以在多种情形(原因)a1,a2,。.。.,an下发生,则用全概率公式求b发生的概率;如果事件b已经发生,要求它是由aj引起的概率,则用贝叶斯公式。
(5)二项概率公式:pn(k)=c(n,k)p^k(1-p)^(n-k),k=0,1,2,。.。.,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有a与a的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。
高一数学必修五知识点梳理 篇五
1、数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集n*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:
a.列表法;
b.图像法;
c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
2、通项公式:数列的第n项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
数列通项公式的特点:
(1)有些数列的通项公式可以有不同形式,即不。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,。.。)。
3、递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:
(1)有些数列的递推公式可以有不同形式,即不。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
以上内容就是差异网为您提供的5篇《高一年级必修五数学知识点整理》,希望可以对您的写作有一定的参考作用。