初二数学常考的知识点:函数的性质4篇-尊龙凯时最新z6com
自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。下面是小编精心为大家整理的4篇《初二数学常考的知识点:函数的性质》,希望能为您的思路提供一些参考。
初二数学常考的知识点:函数的性质 篇一
知识点1 一次函数和正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。
知识点2 函数的图象
由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。。不必一定选取这两个特殊点。
画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可。
知识点3一次函数y=kx b(k,b为常数,k≠0)的性质
(1)k的正负决定直线的倾斜方向;
①k>0时,y的值随x值的增大而增大;
②k﹤o时,y的值随x值的增大而减小。
(2)|k|大小决定直线的倾斜程度,即|k|越大
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数。
(4)由于k,b的符号不同,直线所经过的象限也不同;
①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);
②如图所示,当k>0,b
③如图所示,当k﹤o,b>0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图所示,当k﹤o,b﹤o时,直线经过第二、三、四象限(直线不经过第一象限)。
(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的。另外,从平移的角度也可以分析,例如:直线y=x 1可以看作是正比例函数y=x向上平移一个单位得到的。
知识点4 正比例函数y=kx(k≠0)的性质
(1)正比例函数y=kx的图象必经过原点;
(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;
(3)当k<0时,图象经过第二、四象限,y随x的增大而减小。
知识点5 点p(x0,y0)与直线y=kx b的图象的关系
(1)如果点p(x0,y0)在直线y=kx b的图象上,那么x0,y0的值必满足解析式y=kx b;
(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点p(1,2)必在函数的图象上。
例如:点p(1,2)满足直线y=x 1,即x=1时,y=2,则点p(1,2)在直线y=x l的图象上;点p′(2,1)不满足解析式y=x 1,因为当x=2时,y=3,所以点p′(2,1)不在直线y=x l的图象上。
知识点6 确定正比例函数及一次函数表达式的条件
(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值。
(2)由于一次函数y=kx b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值。
知识点7 待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法。其中未知系数也叫待定系数。例如:函数y=kx b中,k,b就是待定系数。
知识点8 用待定系数法 确定一次函数表达式一般步骤
(1)设函数表达式为y=kx b;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k与b的值,得到函数表达式。
思想方法小结 (1)函数方法。(2)数形结合法。
知识规律小结 (1)常数k,b对直线y=kx b(k≠0)位置的影响。
①当b>0时,直线与y轴的正半轴相交;
当b=0时,直线经过原点;
当b﹤0时,直线与y轴的负半轴相交。
②当k,b异号时,直线与x轴正半轴相交;
当b=0时,直线经过原点;
当k,b同号时,直线与x轴负半轴相交。
③当k>o,b>o时,图象经过第一、二、三象限;
当k>0,b=0时,图象经过第一、三象限;
一次函数知识点
一。知识框架
二。知识概念
1、一次函数:若两个变量x,y间的关系式可以表示成y=kx b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
2、正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3、正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
4、已知两点坐标求函数解析式:待定系数法
初二数学常考的知识点:函数的性质 篇二
一次函数
一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx b (k为任意不为零的实数 b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点a(x1,y1);b(x2,y2),请确定过点a、b的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx b。
(2)因为在一次函数上的任意一点p(x,y),都满足等式y=kx b。所以可以列出2个方程:y1=kx1 b …… ① 和y2=kx2 b …… ②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量s。g=s-ft。
六、常用公式:(不全,希望有人补充)
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2 (y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
二次函数
i.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2 bx c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<>
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
ii.二次函数的三种表达式
一般式:y=ax^2 bx c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2 k [抛物线的顶点p(h,k)]
交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点a(x? ,0)和 b(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a
iii.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
iv.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x= -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点p。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点p,坐标为
p( -b/2a,(4ac-b^2)/4a )
当-b/2a=0时,p在y轴上;当δ= b^2-4ac=0时,p在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
δ= b^2-4ac>0时,抛物线与x轴有2个交点。
δ= b^2-4ac=0时,抛物线与x轴有1个交点。
δ= b^2-4ac<0时,抛物线与x轴没有交点。x的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
v.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2 bx c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2 bx c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 k,y=ax^2 bx c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式 顶点坐标对 称 轴
y=ax^2(0,0) x=0
y=a(x-h)^2(h,0) x=h
y=a(x-h)^2 k(h,k) x=h
y=ax^2 bx c(-b/2a,[4ac-b^2]/4a) x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<>
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 k的图象;
当h>0,k<>
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2 k的图象;
当h<><>
因此,研究抛物线 y=ax^2 bx c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2 k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2 bx c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b>
3.抛物线y=ax^2 bx c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤="" -b/2a时,y随x的增大而增大;当x="" ≥="">
4.抛物线y=ax^2 bx c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点a(x?,0)和b(x?,0),其中的x1,x2是一元二次方程ax^2 bx c=
(a≠0)的两根.这两点间的距离ab=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<><>
5.抛物线y=ax^2 bx c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值="">
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2 bx c(a≠0).
(2)当题给条件为已知图象的。顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2 k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
反比例函数
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当k>0时,反比例函数图像经过一,三象限,是减函数
当k<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
初二数学常考的知识点:函数的性质 篇三
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
4、正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。
7、一次函数与一元一次方程的关系:
任何一个一元一次方程都可转化为:kx b=0(k、b为常数,k≠0)的形式。而一次函数解析式形式正是y=kx b(k、b为常数,k≠0)。当函数值为0时,即kx b=0就与一元一次方程完全相同。
结论:由于任何一元一次方程都可转化为kx b=0(k、b为常数,k≠0)的形式。所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值。
从图象上看,这相当于已知直线y=kx b确定它与x轴交点的横坐标值。
初二数学常考的知识点:函数的性质 篇四
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果ykxb(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当一次函数ykxb中的b为0时,ykx(k为常数,k0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。(如下图)
4. 正比例函数的性质
一般地,正比例函数ykx有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数ykxb有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式ykx(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式ykxb(k0)中的常数k和b。解这类问题的一般方法是待定系数法。
不等式
一元一次不等式和它的解法
一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式,叫一元一次不等式。其标准形式是:ax b>0或ax b<0(a≠0)。
1、一元一次不等式经过去分母、去括号、移项、合并同类项等变形后,能化为ax>b或ax
2、一元一次不等式的解法步骤与解一元一次方程类似,基本思想是化为最简形式(ax>b或ax
一元一次不等式组和它的解法
1、一元一次不等式组及其解集:
几个含有同一个未知数的一元一次不等式合在一起,就组成了一个一元一次不等式组。几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
2、求不等式组的解集的过程,叫做解不等式组
3、解一元一次不等式组的步骤:
(1)分别求出不等式组中各个不等式的解集;
(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
一次不等式(组)中参数取值范围求解技巧
已知一次不等式(组)的解集(特解),求其中参数的取值范围,以及解含方程与不等式的混合组中参变量(参数)取值范围,近年在各地中考卷中都有出现。求解这类问题综合性强,灵活性大,蕴含着不少的技能技巧。下面举例介绍常用的五种技巧方法。
读书破万卷下笔如有神,以上就是差异网为大家带来的4篇《初二数学常考的知识点:函数的性质》,希望可以对您的写作有一定的参考作用。