高考数学复习知识点【优秀10篇】-尊龙凯时最新z6com
新的高考形势下,高三数学怎么去教,学生怎么去学?面对不断变化的高考试题,我们应该重视基础知识的整合,夯实基础。高考数学复习知识点有哪些你知道吗?一起来看看高考数学复习知识点,欢迎查阅!下面是差异网整理的10篇《高考数学复习知识点》,希望朋友们参阅后能够文思泉涌。
高中数学学习方法知识 篇一
立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。 一 培养空间想象力为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方
立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。
一 培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
二 立足课本,夯实基础
直线和平面这些内容,是立体几何的'基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:
(1) 培养空间想象力。
(2) 得出一些解题方面的启示。
(3) 深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。
三总结规律,规范训练
立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。
还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
四 逐渐提高逻辑论证能力
高一数学奇偶性训练题
1、下列命题中,真命题是( )
a.函数y=1x是奇函数,且在定义域内为减函数
b.函数y=x3(x-1)0是奇函数,且在定义域内为增函数
c.函数y=x2是偶函数,且在(-3,0)上为减函数
d.函数y=ax2 c(ac≠0)是偶函数,且在(0,2)上为增函数
解析:选c.选项a中,y=1x在定义域内不具有单调性;b中,函数的定义域不关于原点对称;d中,当a<0时,y=ax2 c(ac≠0)在(0,2)上为减函数,故选c.
2、奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6) f(-3)的值为( )
a.10 b.-10
c.-15 d.15
解析:选c.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6) f(-3)=-2f(6)-f(3)=-2×8 1=-15.
3.f(x)=x3 1x的图象关于( )
a.原点对称 b.y轴对称
c.y=x对称 d.y=-x对称
解析:选a.x≠0,f(-x)=(-x)3 1-x=-f(x),f(x)为奇函数,关于原点对称。
4、如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.
解析:∵f(x)是[3-a,5]上的奇函数,
∴区间[3-a,5]关于原点对称,
∴3-a=-5,a=8.
答案:8
1、函数f(x)=x的奇偶性为( )
a.奇函数 b.偶函数
c.既是奇函数又是偶函数 d.非奇非偶函数
解析:选d.定义域为{__≥0},不关于原点对称。
2、下列函数为偶函数的是( )
a.f(x)=x x b.f(x)=x2 1x
c.f(x)=x2 x d.f(x)=__2
解析:选d.只有d符合偶函数定义。
3、设f(x)是r上的任意函数,则下列叙述正确的是( )
a.f(x)f(-x)是奇函数
b.f(x)f(-x)是奇函数
c.f(x)-f(-x)是偶函数
d.f(x) f(-x)是偶函数
解析:选d.设f(x)=f(x)f(-x)
则f(-x)=f(x)为偶函数。
设g(x)=f(x)f(-x),
则g(-x)=f(-x)f(x)。
∴g(x)与g(-x)关系不定。
设m(x)=f(x)-f(-x),
∴m(-x)=f(-x)-f(x)=-m(x)为奇函数。
设n(x)=f(x) f(-x),则n(-x)=f(-x) f(x)。
n(x)为偶函数。
4、已知函数f(x)=ax2 bx c(a≠0)是偶函数,那么g(x)=ax3 bx2 cx( )
a.是奇函数
b.是偶函数
c.既是奇函数又是偶函数
d.是非奇非偶函数
解析:选a.g(x)=x(ax2 bx c)=xf(x),g(-x)=-xf(-x)=-xf(x)=-g(x),所以g(x)=ax3 bx2 cx是奇函数;因为g(x)-g(-x)=2ax3 2cx不恒等于0,所以g(-x)=g(x)不恒成立。故g(x)不是偶函数。
5、奇函数y=f(x)(x∈r)的图象必过点( )
a.(a,f(-a)) b.(-a,f(a))
c.(-a,-f(a)) d.(a,f(1a))
解析:选c.∵f(x)是奇函数,
∴f(-a)=-f(a),
即自变量取-a时,函数值为-f(a),
故图象必过点(-a,-f(a))。
6.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时( )
a.f(x)≤2 b.f(x)≥2
c.f(x)≤-2 d.f(x)∈r
解析:选b.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选b.
7、若函数f(x)=(x 1)(x-a)为偶函数,则a=________.
解析:f(x)=x2 (1-a)x-a为偶函数,
∴1-a=0,a=1.
答案:1
8、下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(x∈r)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称。其中正确的命题是________.
解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对。
答案:③④
9、①f(x)=x2(x2 2);②f(x)=__;
③f(x)=3x x;④f(x)=1-x2x.
以上函数中的奇函数是________.
解析:(1)∵x∈r,∴-x∈r,
又∵f(-x)=(-x)2[(-x)2 2]=x2(x2 2)=f(x),
∴f(x)为偶函数。
(2)∵x∈r,∴-x∈r,
又∵f(-x)=-x-x=-__=-f(x),
∴f(x)为奇函数。
(3)∵定义域为[0, ∞),不关于原点对称,
∴f(x)为非奇非偶函数。
(4)f(x)的定义域为[-1,0)∪(0,1]
即有-1≤x≤1且x&ne,高中化学;0,则-1≤-x≤1且-x≠0,
又∵f(-x)=1--x2-x=-1-x2x=-f(x)。
∴f(x)为奇函数。
答案:②④
10、判断下列函数的奇偶性:
(1)f(x)=(x-1) 1 x1-x;(2)f(x)=x2 x x<0-x2 x x>0.
解:(1)由1 x1-x≥0,得定义域为[-1,1),关于原点不对称,∴f(x)为非奇非偶函数。
(2)当x<0时,-x>0,则f(-x)=-(-x)2-x=-(-x2 x)=-f(x),
当x>0时,-x<0,则f(-x)=(-x)2-x=-(-x2 x)=-f(x),
综上所述,对任意的x∈(-∞,0)∪(0, ∞),都有f(-x)=-f(x),
∴f(x)为奇函数。
11、判断函数f(x)=1-x2x 2-2的奇偶性。
解:由1-x2≥0得-1≤x≤1.
由x 2-2≠0得x≠0且x≠-4.
∴定义域为[-1,0)∪(0,1],关于原点对称。
∵x∈[-1,0)∪(0,1]时,x 2>0,
∴f(x)=1-x2x 2-2=1-x2x,
∴f(-x)=1--x2-x=-1-x2x=-f(x),
∴f(x)=1-x2x 2-2是奇函数。
12、若函数f(x)的定义域是r,且对任意x,y∈r,都有f(x y)=f(x) f(y)成立。试判断f(x)的奇偶性。
解:在f(x y)=f(x) f(y)中,令x=y=0,
得f(0 0)=f(0) f(0),
∴f(0)=0.
再令y=-x,则f(x-x)=f(x) f(-x),
即f(x) f(-x)=0,
∴f(-x)=-f(x),故f(x)为奇函数。
高三上学期数学必修二知识点 篇二
空间中的平行关系
1、直线与平面平行(核心)
定义:直线和平面没有公共点
判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)
性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行
2、平面与平面平行
定义:两个平面没有公共点
判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行
性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线
高三数学必修四知识点复习
复数的概念:
形如a bi(a,b∈r)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母c表示。
复数的表示:
复数通常用字母z表示,即z=a bi(a,b∈r),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
(1)复平面、实轴、虚轴:
点z的横坐标是a,纵坐标是b,复数z=a bi(a、b∈r)可用点z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义:复数集c和复平面内所有的点所成的集合是一一对应关系,即
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:
复数z=a bi(a、b∈r)在复平面上对应的点z(a,b)到原点的距离叫复数的模,记为|z|,即|z|=
虚数单位i:
(1)它的平方等于-1,即i2=-1;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
(4)i的周期性:i4n 1=i,i4n 2=-1,i4n 3=-i,i4n=1。
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a bi(a、b∈r),当且仅当b=0时,复数a bi(a、b∈r)是实数a;当b≠0时,复数z=a bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
高考数学必考知识点 篇三
一、三角函数题
三角题一般在解答题的前两道题的位置上,主要考查三角恒等变换、三角函数的图像与性质、解三角形等有关内容。三角函数、平面向量和三角形中的正、余弦定理相互交汇,是高考中考查的热点。
二、数列题
数列题重点考查等差数列、等比数列、递推数列的综合应用,常与不等式、函数、导数等知识综合交汇,既考查分类、转化、化归、归纳、递推等数学思想方法,又考查综合运用知识进行运算、推理论证及解决问题的能力。近几年这类试题的位置有所前移,难度明显降低。
三、立体几何题
常以柱体、锥体、组合体为载体全方位地考查立体几何中的重要内容,如线线、线面与面面的位置关系,线面角、二面角问题,距离问题等,既有计算又有证明,一题多问,递进排列,此类试题既可用传统方法解答,又可用空间向量法处理,有的题是两法兼用,可谓珠联璧合,相得益彰。究竟选用哪种方法,要由自己的长处和图形特点来确定。便于建立空间直角坐标系的,往往选用向量法,反之,选用传统方法。另外,“动态”探索性问题是近几年高考立体几何命题的新亮点,三视图的巧妙参与也是立体几何命题的新手法,要注意把握。
四、概率问题
概率题一般在解答题的前三道题的位置上,主要考查数据处理能力、应用意识、必然与或然思想,因此近几年概率题常以概率与统计的交汇形式呈现,并用实际生活中的背景来“包装”。概率重点考查离散型随机变量的分布列与期望、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验与二项分布等;统计重点考查抽样方法(特别是分层抽样)、样本的频率分布、样本的特征数、茎叶图、线性回归、列联表等,穿插考查合情推理能力和优化决策能力。同时,关注几何概型与定积分的交汇考查,此类试题在近几年的高考中难度有所提升,考生应有心理准备。
五、圆锥曲线问题
解析几何题一般在解答题的后三道题的位置上,有时是“把关题”或“压轴题”,说明了解析几何题依然是重头戏,在新课标高考中依然占有较突出的地位。考查重点:第一,解析几何自身模块的小交汇,是指以圆、圆锥曲线为载体呈现的`,将两种或两种以上的知识结合起来综合考查。如不同曲线(含直线)之间的结合,直线是各类曲线和相关试题最常用的“调味品”,显示了直线与方程的各知识点的基础性和应用性。第二,圆锥曲线与不同模块知识的大交汇,以解析几何与函数、向量、代数知识的结合最为常见。有关解析几何的最值、定值、定点问题应给予重视。一般来说,解析几何题计算量大且有一定的技巧性(要求品出“几何味”来),需要“精打细算”,对考生的意志品质和数学机智都是一种考验和检测。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
导数题考查的重点是用导数研究函数性质或解决与函数有关的问题。往往将函数、不等式、方程、导数等有机地综合,构成一道超大型综合题,体现了在“知识网络交汇点处设计试题”的高考命题指导思想。鉴于该类试题的难度大,有些题还有高等数学的背景和竞赛题的味道,标准答案提供的解法往往如同“神来之笔”,确实想不到,加之“搏杀”到此时的考生的精力和考试时间基本耗尽,建议考生一定要当机立断,视时间和自身实力,先看第(1)问可否拿下,再确定放弃、分段得分或强攻。近几年该类试题与解析几何题轮流“坐庄”,经常充当“把关题”或“压轴题”的重要角色。
2021成人高考数学学习技巧 篇四
逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
高三数学必修四知识点复习 篇五
平面的基本性质与推论
1、平面的基本性质:
公理1:如果一条直线的两点在一个平面内,那么这条直线在这个平面内;
公理2:过不在一条直线上的三点,有且只有一个平面;
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:
直线与直线—平行、相交、异面;
直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);
平面与平面—平行、相交。
3、异面直线:
平面外一点a与平面一点b的连线和平面内不经过点b的直线是异面直线(判定);
所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);
两条直线不是异面直线,则两条直线平行或相交(反证);
异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角
2021成人高考数学知识点 篇六
一】
【实数的分类】
【自然数】 表示物体个数的1、2、3、4···等都称为自然数
【质数与合数】
一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。零的相反数是零。
【绝对值】
一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
【倒数】 1除以一个非零实数的商叫这个实数的倒数。零没有倒数。
【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
二】
【代数式】
用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。
【代数式的值】
用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】
【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式
【无理式】根号下含有字母的代数式叫做无理式
【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式
三】
直线 (不定义)直线向两方无限延伸,它无端点。
射线 在直线上某一点旁的部分。射线只有一个端点。
线段 直线上两点间的部分。它有两个端点。
垂线 如果两条直线相交成直角,那么称这两条直线互相垂直。其中一条叫另一条的垂线,它们的交点叫垂足。
斜线 如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
高考数学常考知识点 篇七
高中数学重点知识点讲解:直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
高中数学重点知识点讲解:直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。在高中数学里直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与p1、p2的顺序无关;
(3)以后高中数学涉及到求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高中数学重点知识点讲解:直线方程
①点斜式:
直线斜率k,且过点
注意:高中数学在关于直线方程解法中,当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(a,b不全为0)
⑤一般式:(a,b不全为0)
注意:○1各式的适用范围
○2特殊的方程如:平行于x轴的直线:
(b为常数);平行于y轴的直线:
(a为常数);
高中数学公式大全汇总 篇八
乘法与因式分 a2-b2=(a b)(a-b) a3 b3=(a b)(a2-ab b2) a3-b3=(a-b(a2 ab b2)
三角不等式 a b≤a b a-b≤a b a≤b<=>-b≤a≤b
a-b≥a-b -a≤a≤a
一元二次方程的解 -b √(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 x1 x2=-b/a x1__x2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(a b)=sinacosb cosasinb sin(a-b)=sinacosb-sinbcosa
cos(a b)=cosacosb-sinasinb cos(a-b)=cosacosb sinasinb
tan(a b)=(tana tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1 tanatanb)
ctg(a b)=(ctgactgb-1)/(ctgb ctga) ctg(a-b)=(ctgactgb 1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1 cosa)/2) cos(a/2)=-√((1 cosa)/2)
tan(a/2)=√((1-cosa)/((1 cosa)) tan(a/2)=-√((1-cosa)/((1 cosa))
ctg(a/2)=√((1 cosa)/((1-cosa)) ctg(a/2)=-√((1 cosa)/((1-cosa))
和差化积
2sinacosb=sin(a b) sin(a-b) 2cosasinb=sin(a b)-sin(a-b)
2cosacosb=cos(a b)-sin(a-b) -2sinasinb=cos(a b)-cos(a-b)
sina sinb=2sin((a b)/2)cos((a-b)/2 cosa cosb=2cos((a b)/2)sin((a-b)/2)
tana tanb=sin(a b)/cosacosb tana-tanb=sin(a-b)/cosacosb
ctga ctgbsin(a b)/sinasinb -ctga ctgbsin(a b)/sinasinb
某些数列前n项和
1 2 3 4 5 6 7 8 9 … n=n(n 1)/2 1 3 5 7 9 11 13 15 … (2n-1)=n2
2 4 6 8 10 12 14 … (2n)=n(n 1) 12 22 32 42 52 62 72 82 … n2=n(n 1)(2n 1)/6
13 23 33 43 53 63 …n3=n2(n 1)2/4 1__2 2__3 3__4 4__5 5__6 6__7 … n(n 1)=n(n 1)(n 2)/3
正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径
余弦定理 b2=a2 c2-2accosb 注:角b是边a和边c的夹角
圆的标准方程 (x-a)2 (y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2 y2 dx ey f=0 注:d2 e2-4f>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 s=c__h 斜棱柱侧面积 s=c'__h
正棱锥侧面积 s=1/2c__h' 正棱台侧面积 s=1/2(c c')h'
圆台侧面积 s=1/2(c c')l=pi(r r)l 球的表面积 s=4pi__r2
圆柱侧面积 s=c__h=2pi__h 圆锥侧面积 s=1/2__c__l=pi__r__l
弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r
锥体体积公式 v=1/3__s__h 圆锥体体积公式 v=1/3__pi__r2h
斜棱柱体积 v=s'l 注:其中,s'是直截面面积, l是侧棱长
柱体体积公式 v=s__h 圆柱体 v=pi__r2h
高考备考的知识方法 篇九
“不但要会埋头拉车,还要会抬头看路”是我对高考数学复习的一贯见解。高考是一场成王败寇的残酷竞争,它是公平的也是不公平的,说高考公平是因为所有人都将面对同样的时间、知识、试卷;说高考不公平是因为对每个人来说信息并不对称——对高考分析透彻的人自然拥有更高的复习效率必然会取得更出色的成绩。
这里我强调的并不是高中的基础知识掌握程度而是复习的效率问题,谁的基础知识更牢固谁将取得更好的高考成绩这是一个铁的事实,但它是建立在“所有人的复习效率都是相同的”这个假设之下的,所以大家经常可以看到有些高考考生学的呕心沥血却永远只是中游水平,而另一些高考生拥有大量的休闲活动却仍然能名列前茅。
造成这种现象的原因很多人会归结为“智商”和“运气”,我也不否认这两方面的因素,但最主要的原因还是效率问题:两个高考生同样学了一个小时的数学,一个人领悟了一个高考非常容易考到的重点内容,而另一个人啃下了一个非常难于理解的但是高考从来没有考过的难点内容,那么这样日积月累下来第一个人对高考真题考点的掌握就会远高于后者。这就是我说的“不但要会埋头拉车,还要会抬头看路”的意思,“拉车”就是指认真的复习,而“看路”则是指认清高考考察的重点,把握住高考复习的方向。“拉车”基本上是每个高三学生都能够作到的,但是“看路”就不尽然了,起早贪黑却劳而无功的高考生都是没有解决好复习方向的问题,没有看好“路”。
现在这个阶段是高三文科刚开始复习而理科将近结课的阶段,属于高考复习的初期,这一阶段给大家的建议是:
第一:先看一下近三、五年的高考真题,并不要去做这些高考真题,而是要从中分析出那些是真正的高考考点,从而为整个一年的高考复习定下一个正确的基调。
无法分清考点的轻重是最常见的问题,比如高考中《函数》与《导数》两部分的关系就是一个非常容易使人混乱的地方。《函数》是高一的重点章节,学校会反复强调它的重要性,说它在高考中占多少多少比例等等,而《导数》则只是高三中的一个辅助章节尤其是文科,它的章节比重很小,学校强调的也不够。这就给大家一个错觉就是函数比导数重要,但是事实上在真正的高考中它们两者的位置恰恰相反,函数的考查只有3至4道小题而且都位于试卷前几道题十分简单,其它问题虽然大量使用函数思想但是对同学们解题没有实质上的影响。反观导数它在高考中直接占有一道大题特别是07年的文科试题,它取代了《数列》的地位成为了倒数第二位的14分难题,同时只要遇到“函数单调性”“极值”“最值”“值域相关问题”“切线问题”等都要使用导数知识进行解决。当然函数的单调、极值等可以用《函数》知识处理但比起导数来说这是十分烦琐的。
所以说导数的地位要远比函数来的重要,这一问题往往是影响大家高考复习效率的一个关键问题,发现它并不需要“智商”和“运气”,只要看一遍近几年高考真题即可,这就是我第一条建议的重点所在。
第二:分析自己的实力特征,果断对知识点进行取舍。高考是选拔性的考试,并不要求我们在某个单科中考出满分,只要高考总成绩能够胜出就可以,所以我们一定要根据自己的真实水平对整个高考复习作一个规划。07年天津市理科状元的数学成绩只有138分,并不是传奇的150,他其他的高考科目也都是很高但远没达到最高,这就说明了我们要合理分配自己的精力使自己的能力得以最大的发挥。这一点就是要告戒大家千万不能偏科,我们身边经常有一些高考考生他们某几门学科成绩十分优异(高于状元),但总成绩只能达到中游或中上的水平,他们最大的问题就是时间分配,如果他们节省出一部分花在强势学科上的时间转移到弱势学科上,他们必将取得更好的成绩。
第三:正确对待模拟考试与模拟题。如果已经看过高考真题的同学很容易发现高考真题与模拟题有着天壤之别,大多数模拟题尤其是出自低级别地方的,根本无法达到高考真题的水平,做它们是无法真实反映大家在高考中的表现的。所以大家在现阶段应该首先看“题”是否值得作再看作的是否好,这才是正确的方法。
2021成人高考数学学习方法 篇十
养成良好的学习数学习惯
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
以上就是差异网为大家整理的10篇《高考数学复习知识点》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。