高一年级数学必修四知识点整理(优秀2篇)-尊龙凯时最新z6com

发布时间:

教学反思,是教师通过对其教学活动进行的理性观察与矫正,从而提高其教学能力的活动,是一种分析教学技能的技术。读书破万卷下笔如有神,以下内容是差异网为您带来的2篇《高一年级数学必修四知识点整理》,希望朋友们参阅后能够文思泉涌。

高一年级数学必修四知识点整理 篇一

【公式一:】

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ α)=sinα(k∈z)

cos(2kπ α)=cosα(k∈z)

tan(2kπ α)=tanα(k∈z)

cot(2kπ α)=cotα(k∈z)

【公式二:】

设α为任意角,π α的三角函数值与α的三角函数值之间的关系:

sin(π α)=-sinα

cos(π α)=-cosα

tan(π α)=tanα

cot(π α)=cotα

【公式三:】

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

【公式四:】

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

【公式五:】

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

【公式六:】

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2 α)=cosα

cos(π/2 α)=-sinα

tan(π/2 α)=-cotα

cot(π/2 α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2 α)=-cosα

cos(3π/2 α)=sinα

tan(3π/2 α)=-cotα

cot(3π/2 α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

高一年级数学必修四知识点整理 篇二

指数函数

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无xx。

以上就是差异网为大家整理的2篇《高一年级数学必修四知识点整理》,希望对您的写作有所帮助。

301 50044
网站地图