高一必修一数学知识点复习【优秀7篇】-尊龙凯时最新z6com
高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。读书破万卷下笔如有神,以下内容是差异网为您带来的7篇《高一必修一数学知识点复习》,可以帮助到您,就是差异网小编最大的乐趣哦。
高一数学复习资料整理 篇一
1、函数的零点
(1)定义:
对于函数y=f(x)(x∈d),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈d)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
2、二次函数y=ax2 bx c(a>0)的图象与零点的关系
3、二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
4、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点。在写函数零点时,所写的一定是一个数字,而不是一个坐标。
5、对函数零点存在的判断中,必须强调:
(1)f(x)在[a,b]上连续;
(2)f(a)·f(b)<0;
(3)在(a,b)内存在零点。
这是零点存在的一个充分条件,但不必要。
6、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
高一数学知识的复习整理 篇二
如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
平行或异面。
若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
无数条;平行。
如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系 m.chayi5.com 如何?为什么?
平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
高一必修一数学知识点复习 篇三
两角和公式
sin(a b)=sinacosb cosasinbsin(a-b)=sinacosb-sinbcosa
cos(a b)=cosacosb-sinasinbcos(a-b)=cosacosb sinasinb
tan(a b)=(tana tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1 tanatanb)
ctg(a b)=(ctgactgb-1)/(ctgb ctga)ctg(a-b)=(ctgactgb 1)/(ctgb-ctga)
半角公式
sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1 cosa)/2)cos(a/2)=-√((1 cosa)/2)
tan(a/2)=√((1-cosa)/((1 cosa))tan(a/2)=-√((1-cosa)/((1 cosa))
ctg(a/2)=√((1 cosa)/((1-cosa))ctg(a/2)=-√((1 cosa)/((1-cosa))
倍角公式
tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
和差化积
2sinacosb=sin(a b) sin(a-b)2cosasinb=sin(a b)-sin(a-b)
2cosacosb=cos(a b)-sin(a-b)-2sinasinb=cos(a b)-cos(a-b)
sina sinb=2sin((a b)/2)cos((a-b)/2cosa cosb=2cos((a b)/2)sin((a-b)/2)
tana tanb=sin(a b)/cosacosbtana-tanb=sin(a-b)/cosacosb
ctga ctgbsin(a b)/sinasinb-ctga ctgbsin(a b)/sinasinb
某些数列前n项和
1 2 3 4 5 6 7 8 9 … n=n(n 1)/21 3 5 7 9 11 13 15 … (2n-1)=n2
2 4 6 8 10 12 14 … (2n)=n(n 1)12 22 32 42 52 62 72 82 … n2=n(n 1)(2n 1)/6
13 23 33 43 53 63 …n3=n2(n 1)2/41*2 2*3 3*4 4*5 5*6 6*7 … n(n 1)=n(n 1)(n 2)/3
高三数学必修一知识点:等比数列基本性质 篇四
⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).
⑵对任何m、n,在等比数列中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。
⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t k,p,…,m …=m n r …(两边的自然数个数相等),那么当为等比数列时,有:a.a.a.…=a.a.a.…..
⑷若是公比为q的等比数列,则{|a|}、、、{}也是等比数列,其公比分别为|q|}、、、{}.
⑸如果是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。
⑹如果是等比数列,那么对任意在n,都有a·a=a·q>0.
⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。
⑻当q>1且a>0或0
高一数学必修1知识点归纳 篇五
一:集合的含义与表示
1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
3、集合的表示:{…}
(1)用大写字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}
b、描述法:
①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{xr|x-3>2},{x|x-3>2}
②语言描述法:例:{不是直角三角形的三角形}
③venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:aa
(2)元素不在集合里,则元素不属于集合,即:a¢a
注意:常用数集及其记法:
非负整数集(即自然数集)记作:n
正整数集n.或n
整数集z
有理数集q
实数集r
高一必修一数学知识点复习 篇六
函数的基本性质
在平面直角坐标系中,以函数y=f(x),(x∈a)中的x为横坐标,函数值y为纵坐标的点p(x,y)的集合c,叫做函数y=f(x),(x∈a)的图象。
(1)定义
在平面直角坐标系中,以函数y=f(x),(x∈a)中的x为横坐标,函数值y为纵坐标的点p(x,y)的集合c,叫做函数y=f(x),(x∈a)的图象。
c上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在c上。即记为c={p(x,y)|y=f(x),x∈a}
图象c一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
a、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点p(x,y),最后用平滑的曲线将这些点连接起来。
b、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;
2、利用数形结合的方法分析解题的思路。提高解题的速度。
高一数学必修一主要知识点 篇七
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
以上就是差异网为大家带来的7篇《高一必修一数学知识点复习》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。