九年级数学专题课件【9篇】-尊龙凯时最新z6com

发布时间:

数学课件是非常重要的。教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。这次帅气的小编为您整理了9篇《九年级数学专题课件》,希望能够给您提供一些帮助。

九年级数学课件 篇一

教学目标:

利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:

运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:

(一)引入:

分组复习旧知。

探索:从二次函数y=x2 4x 3在直角坐标系中的图象中,你能得到哪些信息?

可引导学生从几个方面进行讨论:

(1)如何画图

(2)顶点、图象与坐标轴的交点

(3)所形成的三角形以及四边形的面积

(4)对称轴

从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:

1、再探索:二次函数y=x2 4x 3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2 4x 3的顶点为点a,且与x轴交于点b、c;在抛物线上求一点e使sbce= sabc。

再探索:在抛物线y=x2 4x 3上找一点f,使bce与bcd全等。

再探索:在抛物线y=x2 4x 3上找一点m,使bom与abc相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是c(2,1)且与x轴交于点a、点b,已知sabc=3,求抛物线的解析式。

(三)提高练习

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)

(五)作业布置

1、在直角坐标平面内,点o为坐标原点,二次函数y=x2 (k—5)x—(k 4)的图象交x轴于点a(x1,0)、b(x2,0)且(x1 1)(x2 1)=—8。

(1)求二次函数的解析式;

(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为c,顶点为p,求 poc的面积。

2、如图,一个二次函数的图象与直线y= x—1的交点a、b分别在x、y轴上,点c在二次函数图象上,且cbab,cb=ab,求这个二次函数的解析式。

3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度ab=5cm,拱高oc=0。9cm,线段de表示大桥拱内桥长,de∥ab,如图1,在比例图上,以直线ab为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

(2)如果de与ab的距离om=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

九年级数学课件 篇二

教学目标

1.使学生正确理解的意义,掌握的三要素;

2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

3.使学生初步理解数形结合的思想方法。

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数。

难点:正确理解有理数与上点的对应关系。

课堂教学过程设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做。

进而提问学生:在上,已知一点p表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可。

三、运用举例 变式练习

例1 画一个,并在上画出表示下列各数的点:

例2 指出上a,b,c,d,e各点分别表示什么数。

课堂练习

示出来。

2.说出下面上a,b,c,d,o,m各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。

四、小结

指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。

本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究。

五、作业

1.在下面上:

(1)分别指出表示-2,3,-4,0,1各数的点。

(2)a,h,d,e,o各点分别表示什么数?

2.在下面上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

九年级数学专题课件 篇三

一、班级基本情况分析:

本班现有在籍学生56人,其中男生27人,女生29人。在实施新课改中,教师热心进行语文教学改革,培养学生的自学能力,开展自主、合作、探究的教改实验,取得了很好的效果,提高了学生的语文素养,培养了综合实践能力,对推进新一轮教学改革积累了成功的经验。新学期,我们将在校长的带领下学习杜郎口的教学方式方法,使课改进入一个崭新的环节。

二、教材分析:

本册教材是按照《课程标准》编排的新教材,体现了新理念和新目标,致力于构建新的教材系统,促进学生综合素质的提高,确立学生在学习中的主体地位。全书按主题合成单元,每个单元按照主题进行综合训练,努力吸引学生,提高学生的学习积极性。在综合学科中提高学生的语文素养,在不断的实践中,提高学生学习语文的积极性,培养实践能力、创新能力和探究能力。

三、教学的总要求:

认真学习新课程标准,更新教学理念,大胆进行教学改革,实施“自主、合作、探究”的学习方法,确立学生在学习中的主体地位,为学生自主学习、合作学习、探究学习、创造性学习,创造必要的条件,促进学生语文素养的进一步提高,为其他学科的学习打好坚实的基础。

四、教改措施:

1、以深化语文教学改革为契机,加大课堂

教学改革力度,积极投身新课改,运用杜郎口的先进教学理念和多媒体手段进行教学,在减轻学生负担的同时,激发学生地学习兴趣,唤起问题意识,实施教学民主化,努力提高课堂教学质量。

3、认真抓好听说写

读写训练,进行口语交际训练,结合教材中的名著欣赏,诵读欣赏、引导学生进行综合训练,尤其要注重培养语言交际能力和写作能力。

4、注重培养学生良好的学习习惯,掌握良好的学习方法,增强学习的后劲,为学生今后的发展打下基础,重视人文精神和科学精神的培养,确立语文教学的新理念。

5、搞好第二课堂活动,进行网上学习的探索,运用现代多媒体技术提高教学的效率,引导学生扩大阅读面,多读文学名著,多读健康有益的课外读物,提高文学修养,陶冶高尚情操,使学生获得社会所需要的终身受用的语文能力。

6、注重学科之间的联系和相互渗透,强化综合能力的培养,积极开发课堂学习资源和课外学习资源,沟通课堂内外,沟通平行学科,创造性地开展各种活动,努力提高语文素养,实现语文能力的可持续发展,实现终身受用,为中考和高考打下坚实的基础。

关于九年级数学课件 篇四

1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。

2.通过复习轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。

3.旋转的基本性质。

重点

旋转及对应点的有关概念及其应用。

难点

旋转的基本性质。

一、复习引入

(学生活动)请同学们完成下面各题。

1.将如图所示的四边形abcd平移,使点b的对应点为点d,作出平移后的图形。

2.如图,已知△abc和直线l,请你画出△abc关于l的对称图形△a′b′c′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质。

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。

2.再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)

3.第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。

像这样,把一个图形绕着某一点o转动一个角度的图形变换叫做旋转,点o叫做旋转中心,转动的角叫做旋转角。

如果图形上的点p经过旋转变为点p′,那么这两个点叫做这个旋转的对应点。

下面我们来运用这些概念来解决一些问题。

例1如图,如果把钟表的指针看做三角形oab,它绕o点按顺时针方向旋转得到△oef,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点a,b分别移动到什么位置?

解:(1)旋转中心是o,∠aoe,∠bof等都是旋转角。

(2)经过旋转,点a和点b分别移动到点e和点f的位置。

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点o作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△abc),然后围绕旋转中心o转动硬纸板,在黑板上再描出这个挖掉的三角形(△a′b′c′),移去硬纸板。

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段oa与oa′,ob与ob′,oc与oc′有什么关系?

2.∠aoa′,∠bob′,∠coc′有什么关系?

3.△abc与△a′b′c′的形状和大小有什么关系?

老师点评:1.oa=oa′,ob=ob′,oc=oc′,也就是对应点到旋转中心的距离相等。

2.∠aoa′=∠bob′=∠coc′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。

3.△abc和△a′b′c′形状相同和大小相等,即全等。

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

例2如图,△abc绕c点旋转后,顶点a的对应点为点d,试确定顶点b的对应点的位置,以及旋转后的三角形。

分析:绕c点旋转,a点的对应点是d点,那么旋转角就是∠acd,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠bcb′=∠acd,又由对应点到旋转中心的距离相等,即cb=cb′,就可确定b′的位置,如图所示。

解:(1)连接cd;

(2)以cb为一边作∠bce,使得∠bce=∠acd;

(3)在射线ce上截取cb′=cb,则b′即为所求的b的对应点;

(4)连接db′,则△db′c就是△abc绕c点旋转后的图形。

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用。

四、作业布置

教材第62~63页习题4,5,6.

关于九年级数学课件 篇五

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3.通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.具有初步的创新精神和实践能力。

教学重点

1.体会方程与函数之间的联系。

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点

1.探索方程与函数之间的联系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法

讨论探索法。

教具准备

投影片二张

第一张:(记作§2.8.1a)

第二张:(记作§2.8.1b)

教学过程

ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx b=0(k≠0)和一次函数y=kx b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx b就转化成了一元一次方程kx b=0,且一次函数y=kx b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx b=0的解。

初三数学二次函数教案教学方法

一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

二、重视每一个学生学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求

三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

2二次函数教学方法一

一、立足教材,夯实双基:进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要。并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现

二、立足课堂,提高效率:做到教师入题海,学生出题海。教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,限度的调动学生的参与度,激发他们的学习兴趣,达到的复习效果。

四、激发兴趣,提高质量:兴趣是学习的动力,在上复习课时尤为重要。因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感。这样他们才会更有兴趣的学习下去。

3二次函数教学方法二

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

4二次函数教学方法三

1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

3.教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事;

4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

关于九年级数学课件 篇六

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用。

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用。

重点

中心对称图形的有关概念及其它们的运用。

难点

区别关于中心对称的两个图形和中心对称图形。

一、复习引入

1.(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

关于中心对称的两个图形是全等图形。

2.(学生活动)作图题。

(1)作出线段ao关于o点的对称图形,如图所示。

(2)作出三角形aob关于o点的对称图形,如图所示。

延长ao使oc=ao,延长bo使od=bo,连接cd,则△cod即为所求,如图所示。

二、探索新知

从另一个角度看,上面的(1)题就是将线段ab绕它的中点旋转180°,因为oa=ob,所以,就是线段ab绕它的中点旋转180°后与它本身重合。

上面的(2)题,连接ad,bc,则刚才的关于中心o对称的两个图形就成了平行四边形,如图所示。

∵ao=oc,bo=od,∠aob=∠cod

∴△aob≌△cod

∴ab=cd

也就是,abcd绕它的两条对角线交点o旋转180°后与它本身重合。

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形。

老师点评:老师边提问学生边解答的特点。

(学生活动)例2请说出中心对称图形具有什么特点?

老师点评:中心对称图形具有匀称美观、平稳的特点。

例3求证:如图,任何具有对称中心的四边形是平行四边形。

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分。

证明:如图,o是四边形abcd的对称中心,根据中心对称性质,线段ac,bd点o,且ao=co,bo=do,即四边形abcd的对角线互相平分,因此,四边形abcd是平行四边形。

三、课堂小结(学生归纳,老师点评)

本节课应掌握:

1.中心对称图形的有关概念;

2.应用中心对称图形解决有关问题。

四、作业布置

教材第70页习题8,9,10.

九年级数学优秀课件 篇七

教学目标

(一)教学知识点

1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步发展估算能力。

(二)能力训练要求

1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。

(三)情感与价值观要求

通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

教学重点

1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、能够利用二次函数的图象求一元二次方程的近似根。

教学难点

利用二次函数的图象求一元二次方程的近似根。

教学方法

学生合作交流学习法。

教具准备

投影片三张

第一张:(记作§2.8.2a)

第二张:(记作§2.8.2b)

第三张:(记作§2.8.2c)

教学过程

ⅰ。创设问题情境,引入新课

[师]上节课我们学习了二次函数y=ax2 bx c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2 bx c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。但是在图象上我们很难准确地求出方程的解,所以要进行估算。本节课我们将学习利用二次函数的图象估计一元二次方程的根。

九年级数学优秀课件篇2

1、正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点。

2、能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形。

重点

中心对称的概念及性质。

难点

中心对称性质的推导及理解。

复习引入

问题:作出下图的两个图形绕点o旋转180°后的图案,并回答下列的问题:

1、以o为旋转中心,旋转180°后两个图形是否重合?

2、各对应点绕o旋转180°后,这三点是否在一条直线上?

老师点评:可以发现,如图所示的两个图案绕o旋转180°后都是重合的,即甲图与乙图重合,△oab与△cod重合。

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

探索新知

(老师)在黑板上画一个三角形abc,分两种情况作两个图形:

(1)作△abc一顶点为对称中心的对称图形;

(2)作关于一定点o为对称中心的对称图形。

第一步,画出△abc.

第二步,以△abc的c点(或o点)为中心,旋转180°画出△a′b′c和△a′b′c′,如图(1)和图(2)所示。

从图(1)中可以得出△abc与△a′b′c是全等三角形;

分别连接对称点aa′,bb′,cc′,点o在这些线段上且o平分这些线段。

下面,我们就以图(2)为例来证明这两个结论。

证明:(1)在△abc和△a′b′c′中,oa=oa′,ob=ob′,∠aob=∠a′ob′,∴△aob≌△a′ob′,∴ab=a′b′,同理可证:ac=a′c′,bc=b′c′,∴△abc≌△a′b′c′;

(2)点a′是点a绕点o旋转180°后得到的,即线段oa绕点o旋转180°得到线段oa′,所以点o在线段aa′上,且oa=oa′,即点o是线段aa′的中点。

同样地,点o也在线段bb′和cc′上,且ob=ob′,oc=oc′,即点o是bb′和cc′的中点。

因此,我们就得到

1、关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

2、关于中心对称的两个图形是全等图形。

例题精讲

例1如图,已知△abc和点o,画出△def,使△def和△abc关于点o成中心对称。

分析:中心对称就是旋转180°,关于点o成中心对称就是绕o旋转180°,因此,我们连ao,bo,co并延长,取与它们相等的线段即可得到。

解:(1)连接ao并延长ao到d,使od=oa,于是得到点a的对称点d,如图所示。

(2)同样画出点b和点c的对称点e和f.

(3)顺次连接de,ef,fd,则△def即为所求的三角形。

例2(学生练习,老师点评)如图,已知四边形abcd和点o,画四边形a′b′c′d′,使四边形a′b′c′d′和四边形abcd关于点o成中心对称(只保留作图痕迹,不要求写出作法)。

课堂小结(学生总结,老师点评)

本节课应掌握:

中心对称的两条基本性质:

1、关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;

2、关于中心对称的两个图形是全等图形及其它们的应用。

作业布置

教材第66页练习

九年级数学专题课件 篇八

在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。

一、注重类比教学

不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学。在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的。有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。

首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:

《正比例函数》教学流程

(一)环节一:概念的建立

通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。

(二)环节二:函数图象

这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。

(三)环节三:探究函数性质

让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。

(四)环节四:概念的归纳

将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。

二、注重数形结合的教学

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:

(1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。

(2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的。简单画法,追求方法的化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到方法的掌握,达到认识上的状态。

(3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。

函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。

关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的。应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。

关于九年级数学课件 篇九

1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点。

2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形。

重点

中心对称的概念及性质。

难点

中心对称性质的推导及理解。

复习引入

问题:作出下图的两个图形绕点o旋转180°后的图案,并回答下列的问题:

1.以o为旋转中心,旋转180°后两个图形是否重合?

2.各对应点绕o旋转180°后,这三点是否在一条直线上?

老师点评:可以发现,如图所示的两个图案绕o旋转180°后都是重合的,即甲图与乙图重合,△oab与△cod重合。

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

探索新知

(老师)在黑板上画一个三角形abc,分两种情况作两个图形:

(1)作△abc一顶点为对称中心的对称图形;

(2)作关于一定点o为对称中心的对称图形。

第一步,画出△abc.

第二步,以△abc的c点(或o点)为中心,旋转180°画出△a′b′c和△a′b′c′,如图(1)和图(2)所示。

从图(1)中可以得出△abc与△a′b′c是全等三角形;

分别连接对称点aa′,bb′,cc′,点o在这些线段上且o平分这些线段。

下面,我们就以图(2)为例来证明这两个结论。

证明:(1)在△abc和△a′b′c′中,oa=oa′,ob=ob′,∠aob=∠a′ob′,∴△aob≌△a′ob′,∴ab=a′b′,同理可证:ac=a′c′,bc=b′c′,∴△abc≌△a′b′c′;

(2)点a′是点a绕点o旋转180°后得到的,即线段oa绕点o旋转180°得到线段oa′,所以点o在线段aa′上,且oa=oa′,即点o是线段aa′的中点。

同样地,点o也在线段bb′和cc′上,且ob=ob′,oc=oc′,即点o是bb′和cc′的中点。

因此,我们就得到

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

2.关于中心对称的两个图形是全等图形。

例题精讲

例1如图,已知△abc和点o,画出△def,使△def和△abc关于点o成中心对称。

分析:中心对称就是旋转180°,关于点o成中心对称就是绕o旋转180°,因此,我们连ao,bo,co并延长,取与它们相等的线段即可得到。

解:(1)连接ao并延长ao到d,使od=oa,于是得到点a的对称点d,如图所示。

(2)同样画出点b和点c的对称点e和f.

(3)顺次连接de,ef,fd,则△def即为所求的三角形。

例2(学生练习,老师点评)如图,已知四边形abcd和点o,画四边形a′b′c′d′,使四边形a′b′c′d′和四边形abcd关于点o成中心对称(只保留作图痕迹,不要求写出作法).

课堂小结(学生总结,老师点评)

本节课应掌握:

中心对称的两条基本性质:

1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;

2.关于中心对称的两个图形是全等图形及其它们的应用。

作业布置

教材第66页练习

读书破万卷下笔如有神,以上就是差异网为大家带来的9篇《九年级数学专题课件》,能够帮助到您,是差异网最开心的事情。

306 45849
网站地图