八年级下册数学优秀课件(优秀5篇)-尊龙凯时最新z6com
了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,会用平方运算求某些非负数的算术平方根。这里给大家分享一些关于八年级数学下册课件,方便大家学习。它山之石可以攻玉,下面差异网为您精心整理了5篇《八年级下册数学优秀课件》,如果能帮助到亲,我们的一切努力都是值得的。
八年级下册数学优秀课件 篇一
一、教学目标:
1、学生在观察、操作、游戏等活动中体验分类标准的多样性,知道根据不同的分类标准可以有不同的分类方法,体会分类的作用。
2、感受数学与生活的紧密联系,培养学习兴趣,培养操作、合作、表达的能力,体验成功的喜悦。
二、教学重点:
体验分类的结果在同一标准下的一致性、不同标准的多样性。
三、教学难点:
让学生体会分类的思想方法,培养学生初步的观察能力、比较能力和动手操作能力。
四、教学过程:
(一)创设情境,体验分类多样性。
1、猜谜语。
四四方方一口箱,书本文具里面藏,每天上学离不了,它是我们的好伙伴。
2、对了,小朋友们每天都要带着书包来上学,陈老师想知道你们的书包都是谁整理的呀?
3、噢,除了一两个小朋友是爸爸妈妈帮助整理的以外,大部分小朋友都是自己整理的呀,都是自己的事情自己做的好孩子!
4、整理书包比赛。(动手整理自己的书包。)
(1)小朋友们平时都整理过书包,先请大家和同小组的小朋友们商量一下,打算怎么整理自己的书包。
(2)小朋友们开始互相讨论。
(3)小组汇报整理的情况:有按大小分的,有按语数分的,有按书本分的。
5、组织学生看书。
6、小结什么是分类,以及分类有什么好处。
(二)分一分。
1、分人物头像。
(1)请小朋友们以四人为一组,互相讨论看这么多的客人,该怎样分类,按什么分,分成几组,陈老师看哪一组分得又快又好,方法最多。
(2)学生边说教师边归纳,边根据分的情况动手把黑板上的人物头像移动分类。
(3)分的结果大致有以下几种:按男女分;按年龄分;按是否戴眼镜分;按是否扎辫子分;按领子形状分;按是否系红领巾分……
2、分动物。
(可以按生活环境、大小来分。)
(1)老师要带大家一起来看可爱的动物,藏在袋子里,请小朋友们打开袋子取出图片。
(2)生取出图片看到动物后进行分类。
(3)小组合作动手分一分。
3、分几何图形。
(可以按颜色、大小、形状来分。)
你们有本领给这些图形也分分类吗?这回有个要求,请小朋友们自己先独立地思考,想想我要怎么分,按什么分,分几类,看哪个小朋友想的方法又多又合理。
4、分算式。你们能给这些算式也分分类吗?怎样分?
(三)总结。
今天,我们学会了一个新本领――分类。在平时的学习和生活中有哪些地方需要用到它呢?
小朋友们以后在生活中还会经常用到。
八年级数学下册课件 篇二
一、目标要求
1、理解掌握分式的四则混合运算的顺序。
2、能正确熟练地进行分式的加、减、乘、除混合运算。
二、重点难点
重点:分式的加、减、乘、除混合运算的顺序。
难点:分式的加、减、乘、除混合运算。
分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
三、解题方法指导
【例1】计算:(1 )[ ( )]·;
(2)(x-y-)(x y-)÷[3(x y)-]。
分析:分式的四则混合运算要注意运算顺序及括号的关系。
解:(1)原式=[ ]·=[ ]·=·==。
(2)原式=·÷=··=y-x。
【例2】计算:(1)(- )·(a3-b3);
(2)(-)÷。
解:(1)原式=- =- ab
=a2 ab b2-(a2-b2)-ab
=a2 ab b2-a2 b2-ab=2b2。
(2)原式=[-]·=-=-====。
说明:分式的加、减、乘、除混合运算注意以下几点:
(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。
(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。
(3)注意括号的“添”或“去”、“变大”与“变小”。
(4)结果要化为最简分式。
四、激活思维训练
▲知识点:求分式的值
【例】已知x =3,求下列各式的值:
八年级数学下册课件 篇三
教学目标:
知识与技能目标:
1、掌握矩形的概念、性质和判别条件。
2、提高对矩形的性质和判别在实际生活中的应用能力。
过程与方法目标:
1、经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。
2、知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。
情感与态度目标:
1、在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。2.通过对矩形的探索学习,体会它的内在美和应用美。
教学重点:
矩形的性质和常用判别方法的理解和掌握。
教学难点:
矩形的性质和常用判别方法的综合应用。
教学方法:
分析启发法
教具准备:
像框,平行四边形框架教具,多媒体课件。
教学过程设计:
一。情境导入:
演示平行四边形活动框架,引入课题。
二。讲授新课:
1、归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)
结论:有一个内角是直角的平行四边形是矩形。
八年级数学上册教案2.探究矩形的性质:
(1)。问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答。)
结论:矩形的四个角都是直角。
(2)。探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状。
①。随着∠α的变化,两条对角线的长度分别是怎样变化的?
②。当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③。当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳。)
结论:矩形的两条对角线相等。
(3)。议一议:(展示问题,引导学生讨论解决。)
①。矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由。
②。直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4)。归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”。)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形。
例解:(性质的运用,渗透矩形对角线的“化归”功能。)
如图,在矩形abcd中,两条对角线ac,bd相交于点o,ab=oa=4
厘米。求bd与ad的长。
(引导学生分析、解答。)
探索矩形的判别条件:(由修理桌子引出)
(1)。想一想:(学生讨论、交流、共同学习)
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形。
(理由可由师生共同分析,然后用幻灯片展示完整过程。)
(2)。归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形。
对角线相等的平行四边形是矩形。
三。课堂练习:
(出示p98随堂练习题,学生思考、解答。)
四。新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结。)
五。作业设计:p99习题4.6第1、2、3题。
板书设计:
4、矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
三。矩形的判别条件:
例1
课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
八年级数学下册课件 篇四
教学目标:
1、在现实情境中,通过具体的操作活动,了解直角三角形的判定定理,
2、运用判定定理解决有关问题。
重点:
直角三角形的判定定理。
难点:
探索直角三角形的判定定理的应用。
教学过程:
一、回顾知识引入新课
1、直角三角形的定义:有一个角是直角的三角形叫直角三角形。
2、三角形内角和性质:三角形内角和等于180°。
3、三角形中线的定义:三角形顶点与对边中点连线段。
二、想一想,探求判定定理。
1、在△abc中,如果∠a ∠b=90°那么△abc是直角三形吗?
证明:∵∠a ∠b=90°(已知)
∠a ∠b ∠c=180°(△的内角和为180°)
∴∠c=180°-(∠a ∠b)=180°-90°=90°
∴△abc是直角三角形(直角三角形定义)
直角△的判定定理1:两锐角互余的△是直角三角形。
在三角形中如果两锐角互余那么三角形是直角△
2、如果,三角形一边上的中线等这边的一半,那么这个△是直角△吗?
已知,在△abc中,cd是ab边上的中线且cd=1/2ab,求证△abc是rt△
证明∵cd是△abc的ab边上中线(已知)
ad=bd=1/2ab(中点的性质)
∵cd=1/2ab(已知)
∴cd=bdcd=ad
∴∠2=∠b∠1=∠a(等边对等角)
∵∠a ∠b ∠abc=180(三角形内角和性质)
∴∠a ∠b (∠1 ∠2)=180
∴∠a ∠b ∠a ∠b=180
∴2(∠a ∠b)=180
∠a ∠b=90
所以三角形abc是直角三角形(直角三角形判定定理1)
三、巩固与练习
1、在△abc,若∠a=35,∠b=55则△abc是△?
2、在△abc中,cd是ab边上的中线,cd=1/2ab,那么△abc的形状是()
a:锐角△b:钝角△c:直角△d:以上都不对
3、在等边△abc中,延长bc至d,使cd=cb,使ac=1/2bd。
求证:△abd是直角△,
证明:∵cd=cb(已知)
∴点c为bc的中点(中点的定义)
∴ac为△abc的边bd上的中线(中线的定义)
∵ac=1/2bd(已知)
∴△abd是直角△(直角△的判定定理2)
四、小结:这节课学习了直角三角形两个判定定理
1、两锐角互余的三角形是直角三角形。
2、在三角形中如果一条边上的中线,等于这条边的一半的三角形是直角三角形。
五、作业布置:
课本87页练习题。
八年级数学下册课件 篇五
知识结构:
重点与难点分析:
本节内容的重点是等腰三角形的判定定理。本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法。由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。
教法建议:
本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言。最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理。这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构
为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?
一。教学目标:
1、使学生掌握等腰三角形的判定定理及其推论;
2、掌握等腰三角形判定定理的运用;
3、通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4、通过自主学习的发展体验获取数学知识的感受;
5、通过知识的纵横迁移感受数学的辩证特征。
二。教学重点:
等腰三角形的判定定理
三。教学难点:
性质与判定的区别
四。教学用具:
直尺,微机
五。教学方法:
以学生为主体的讨论探索法
六。教学过程:
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”)。
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
已知:如图,△abc中,∠b=∠c.
求证:ab=ac.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以ab、ac为对应边的全等三角形。因为已知∠b=∠c,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从a点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠bac的平分线ad或作bc边上的高ad等证三角形全等的不同方法,从而推出ab=ac.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。
(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。
2、推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
要让学生自己推证这两条推论。
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。
证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.
3、应用举例
例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证ab=ac,可先证明∠b=∠c,因为已知∠1=∠2,所以可以设法找出∠b、∠c与∠1、∠2的关系。
已知:∠cae是△abc的外角,∠1=∠2,ad∥bc.
求证:ab=ac.
证明:(略)由学生板演即可。
补充例题:(投影展示)
1、已知:如图,ab=ad,∠b=∠d.
求证:cb=cd.
分析:解具体问题时要突出边角转换环节,要证cb=cd,需构造一个以 cb、cd为腰的等腰三角形,连结bd,需证∠cbd=∠cdb,但已知∠b=∠d,由ab=ad可证∠abd=∠adb,从而证得∠cdb=∠cbd,推出cb=cd.
证明:连结bd,在 中, (已知)
(等边对等角)
(已知)
即
(等教对等边)
小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。
2、已知,在 中, 的平分线与 的外角平分线交于d,过d作de//bc交ac与f,交ab于e,求证:ef=be-cf.
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,be=de,df=cf即可证明结论。
证明: de//bc(已知)
,
be=de,同理df=cf.
ef=de-df
ef=be-cf
小结:
(1)等腰三角形判定定理及推论。
(2)等腰三角形和等边三角形的证法。
七。练习
教材 p.75中1、2、3.
八。作业
教材 p.83 中 1.1)、2)、3);2、3、4、5.
九。板书设计
以上就是差异网为大家带来的5篇《八年级下册数学优秀课件》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。