平行四边形的面积教学设计与评析【最新6篇】-尊龙凯时最新z6com
作为一名辛苦耕耘的教育工作者,时常需要准备好教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写才好呢?下面是差异网的小编为您带来的6篇《平行四边形的面积教学设计与评析》,如果对您有一些参考与帮助,请分享给最好的朋友。
说教法 篇一
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。
在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。
在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。
在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。
.思考题 篇二
用铁丝围一个右图这样的平行四边形,至少需要用多长的铁丝?
(单位:厘米)
《平行四边形的面积》五年级数学教案 篇三
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程:
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
1、数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题:
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知师:同学们,通过今天的学习,你有什么收获呢?
平行四边形的面积教学设计 篇四
教学目标
1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。
2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。
3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。
4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。
难点平行四边形面积公式的推导过程。
教具
1、多媒体计算机及课件;
2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。
教学过程
一、质疑引新:
1、这图形你认识吗?长方形面积公式是怎样的?宽]这又是什么图形?指出平行四边形的底和高?
2、谈话引入:你想知道你所做的平行四边形面积有多大吗?
二、引导探求:
㈠提出问题:
1、用数方格法求平行四边形的面积
⑴谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材p69图)。
⑵数出方格图中平行四边形的面积。提问:
a、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)
b、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?
⑶若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?
2、电脑显示教材p69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。
3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?
电脑逐步显示:平行四边形的面积=长方形的面积。
平行四边形的底=长方形的长;
平行四边形的高=长方形的宽;
引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!
电脑展示:
(1)底、高、不变,面积不变。
(2)底、高改变,面积变化。
你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?
㈡推导公式:
1、小组合作研究:
长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)
⑴怎样剪拼才能将平行四边形转化成长方形?
⑵转化后的图形与原平行四边形有什么关系?
(要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)
2、各小组实验操作,教师巡视指导。
3、各小组交流实验情况:
⑴谁愿意把你的转化方法说给大家听呢?请上台来交流!
⑵有没有不同的剪拼方法?(继续请同学演示)。
⑶电脑演示各种转化方法。
4、小组合作讨论归纳总结规律:
⑴平行四边形剪拼成长方形后,什么变了?什么没变?
⑵剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶剪样成的图形面积怎样计算?
⑷小组上台汇报,指着图形说一次得出:
因为:长方形的面积=长×宽
所以:平行四边形的面积=底×高(同位指着图形说)
7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么s=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“。”,也可以省略不写,所以平行四边形的面积公式还可以记作s=a.h或s=ah(板书)。
㈢巩固公式:
刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)
㈣应用解决:
下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)
板书:32.6×8.4≈274(平方米)
答:它的面积约是274平方米。
(挑一学生的作业投影评讲)
平行四边形的面积教学设计与评析 篇五
教学目的
1.使学生理解平行四边形的面积计算公式,并会应用公式计算平行四边形的面积。
2.培养学生的操作能力和思维能力。
3.有机地对学生进行辩证唯物主义观点的启蒙教育。
教学重难点:
重点:面积的计算。
难点:公式推导。
教学过程
一、复习
1.填空
(1)( )叫做面积。
(2)常用的面积单位有( )。
2.通过测量,分别说出下面每个平行四边形的底和高。(单位:厘米)
(附图 {图})
3.先测量,后计算下面各图形的面积。(单位:厘米)
(附图 {图})
〔评析:长方形的面积的计算是平行四边形面积计算的生长点,是认知前提,是可以利用的起固定作用的 知识。在一堂新授课中,找准知识的生长点是很重要的。在影响学习的所有变量中,按布卢姆的观点,认知前 提占50%。〕
二、导入新课
平行四边形的面积怎样计算呢?这一节课我们就研究这个问题。
板书课题:平行四边形的面积。
三、讲授新课
1.用数方格的方法求平行四边形的面积。
(1)数一数:
①用投影片投影出示下图。(每个小方格代表1平方厘米)
(附图 {图})
②请同学们用数方格(不满一格的都按半格计算)的方法,分别求出图中长方形和平行四边形的面积。
长方形的面积是( )。
平行四边形的面积是( )。
〔评析:直观认识两图形的面积相等〕
(2)比一比:
①长方形的长和平行四边形的底有什么关系?宽和高呢?
②长方形的面积和平行四边形的面积相等吗?
(3)小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
〔评析:通过比较,使平行四边形与长方形联系起来,查明面积相等的原因。认识进一层,为知识的迁移 提供了依据。〕
2.推导公式
(1)投影演示
教师用割补的方法,引导学生把一个平行四边形变成长方形。
(附图 {图})
〔评析:“引导”体现了教师的主导作用。〕
(2)学生操作
学生拿出课前准备好的平行四边形状的卡片,自己动手用剪刀按下面割补的方法,把它变成一个长方形。
(附图 {图})
(割下补在图的右边)
〔评析:任一个平行四边形,通过割补都可以变成和原平行四边形面积相等的长方形。补充一个实例,特 别是学生自己动手,使学生确信无疑。为归纳公式提供了充分的事实。培养了学生动手操作的能力。人人动手 ,既调动学习积极性,又可面向全体。〕
(3)提问
①割补成的长方形的长和宽与原来的平行四边形的底和高有什么关系?
②割补成的长方形的面积与原来的平行四边形的面积有什么关系?
(4)推导公式
填□:
长方形的面积 =长×宽
↓ ↓
平行四边形的面积=□×□
〔评析:水到渠成,实现知识的迁移。培养了学生推理的能力。〕
(5)验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。
〔评析:前后结果一致,进一步说明公式的正确性。〕
3.自学例1
学生自学例1后,教师根据学生提出的问题讲解。
〔评析:自己动手应用公式计算面积。培养学生解决实际问题的能力。人人都做,又一次体现面向全体学 生。〕
四、课堂练习
第一组:
1.下图中每个小正方形的边长都是1厘米,用数方格和应用公式计算两种方法求平行四边形的面积。
(附图 {图})
2.算出下面每个平行四边形的面积。(单位:分米)
(附图 {图})
第二组:
根据下表中给出的平行四边形的数据,填空格。
(附图 {图})
1.下图中两个平行四边形的面积相等吗?为什么?
(附图 {图})
2.下图中已知正方形的周长是20米,求出平行四边形的面积。
(附图 {图})
〔评析:练习设计由浅入深,层次清楚。第一组是基本练习,意在巩固所学知识。第二组表式练习,可以 口算结果,加大练习量;后面几个计算底或高的填空练习,使公式运用达到灵活的程度。第三组是综合性练习,通过对图形的观察、推理,找到解题方法,培养学生逻辑思维能力。〕
五、课堂小结(略)
六、布置作业(略)
〔总评:本节几何初步知识的教学设计,从直观入手,通过观察、拼摆,比较、分析,运用知识迁移规律 ,得到面积计算公式的教学过程,获得知识。培养了学生的逻辑思维能力,又对学生进行辩证唯物主义的启蒙 教育。较好的处理了知识与能力,知识与思想教育的关系。〕
教材分析: 篇六
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
读书破万卷下笔如有神,以上就是差异网为大家带来的6篇《平行四边形的面积教学设计与评析》,希望对您的写作有所帮助。